Case Study Pea Protein Burger

Dr. S.A. Sadownik

Topic: Descriptive Statistics

Date: June 11, 2023 (c) 2023

setwd("~/Desktop")

getwd()

dataset = read.csv("Flamin 50-50-Burger-Sales-Sept-2022-March-2023-1.csv")

#dataset = read.csv("Cove 50-50-Burger-Sales-Sept-2022-March-2023-1.csv")

#dataset = read.csv("50-50-Burger-Sales-Sept-2022-March-2023-1.csv")

Alternatively, you can use the following to open a file browse window

dataset = read.csv(file.choose(),header=TRUE)

View(dataset)

LOAD PACKAGES

library(psych) # need this package to use the describe function library(car) # need this package to use the leveneTest function library(effectsize) # need this package to use the cohens_f function and the eta-squared library(DescTools) # need this package to use the Dunnett's function

=== Single Factor Between Groups ANOVA ===

RESEARCH QUESTION AND INFORMATION ABOUT THE VARIABLES

#Null hypothesis there will be no difference in average sales in proximity to Climate Change events on campus

#Alternative hypothesis there will be a difference in average sales in proximity to Climate Change events on campus

DEFINE THE VARIABLES

DV <- dataset\$Sum.of.Product.Quantity

IV <- as.factor(dataset\$Profit.Center.Name) # we turn our IV into a factor levels(IV) <- list(Cove="1",FlaminGoodGrill="2") # we name our factors for easier interpretation

DESCRIPTIVE STATISTICS

Get the descriptive measures for the DV using the IV as a grouping factor

Note, we use describeBy instead of describe

describeBy(DV,IV)

DEFINE THE VARIABLES

```
DV <- dataset$Sum.of.Product.Quantity
IV <- as.factor(dataset$Month) # we turn our IV into a factor
levels(IV) <- list(Jan="1",Feb="2", Mar='3', Sep='9', Oct='10', Nov='11', Dec='12') # we name our
factors for easier interpretation
# DESCRIPTIVE STATISTICS
# Get the descriptive measures for the DV using the IV as a grouping factor
# Note, we use describeBy instead of describe
describeBy(DV,IV)
#### === Data Visualization === ####
if(length(find.package('ggplot2', quiet=TRUE)) == 0) {install.packages('ggplot2', dependencies =
TRUE, type = "binary")}
library(ggplot2) # need this package to plot data
# GRAPH THE RESULTS
# We can create a bar graph of the means to display the difference between the two groups
plot <- ggplot(dataset, aes(x=IV, y=DV)) +
geom bar(position = "dodge",
                                        # ensures that the position of the bars do not overlap
(dodge,duck,dip,dive,dodge)
      stat = "summary",
                                  # displays the bar height based on a summary statistic, in this
case we request the mean; fun="mean"
      fun = "mean") +
ylab("Burger Sales") +
                                  # add title to y-axis
xlab("Month") +
                               # add title to x-axis
 scale x discrete(limits=levels(IV))
                                       # label x-axis with category response to IV (instead of
numeric response of '1' and '2')
# Display figure
plot
# Once you create your figure, you can export it in a few ways.
# For now, click on the 'Export' tab above where the plot is generated.
# From the drop-down menu you can either save the figure as an image, pdf, or "Copy to
Clipboard..." to paste elsewhere (e.g., a word document).
```