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Abstract
With the deployment of mega constellations of Low-Earth-
Orbit (LEO) satellites, low latency and high throughput In-
ternet coverage is extended globally. Latency-sensitive appli-
cations can benefit from the inherent lower transmission
delay of LEO satellite networks compared to traditional
Geostationary-Earth-Orbit (GEO) satellite networks. Starlink
employs a globally time-synchronized controller to manage
the association of satellite-to-ground communication links
with an interval of 15 seconds, at fixed 12-27-42-57 seconds
of every minute. Latency spikes and packet losses can occur
during the handover period which can degrade the perfor-
mance of transport layer protocols including TCP and QUIC,
which rely on similar congestion control algorithms for fair
data transmission. In this paper, we investigate the impact of
the frequent Starlink handover events on QUIC performance.
By leveraging the predictable handover patterns to avoid un-
necessary congestion window reduction, we improved the
performance of QUIC by up to 35% in terms of completion
time in both network emulation and real-world experiments
over Starlink networks. Our approach is independent of spe-
cific loss-sensitive congestion control algorithms and can be
easily generalized.

CCS Concepts
• Networks→ Transport protocols; Network measure-
ment.
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1 Introduction
Low-Earth-Orbit (LEO) satellite networks have seen a surge
in interest in recent years, driven by the widespread deploy-
ment of mass-produced small satellites and reduced launch
costs. Starlink, the pilot project of SpaceX, is the most suc-
cessful LEO satellite constellation, with over 6,000 satellites
in operation as of May 2024, covering 3 million subscribers in
nearly 100 countries and regions [10]. LEO satellite networks
have the unique advantage of low latency connectivity, com-
pared with traditional satellite networks which operate in
geostationary Earth orbits at an altitude of 35,786 km. How-
ever, the high mobility of LEO satellites makes the Starlink
user terminal (UT) experience frequent handovers between
satellites. Starlink employs a globally time-synchronized con-
troller to manage the handover process [11]. Specifically,
the handovers between UT and satellites happen every 15
seconds, at the 12-27-42-57 seconds of each minute, synchro-
nized globally. This unique characteristic enables the UT
to track satellites and maintain connectivity with its built-
in phased array antenna throughout the handover process.
However, handovers result in latency spikes and introduces
packet loss during the handover period, which could poten-
tially impact the performance of upper layer protocols and
applications [14].

The highly dynamic network conditions in LEO satellite
networks can potentially degrade the throughput perfor-
mance of transport layer protocols, including TCP and QUIC.
Specifically, the latency spikes and packet loss introduced
by the frequent handover process in Starlink can be treated
as a false congestion signal by different congestion control
(CC) algorithms. Zhao et al. [14] have shown that the TCP
downlink throughput in Starlink is significantly affected by
the handover process, and CC algorithms have to initiate a
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slow start phase post-handover to recover, which has a sig-
nificant negative impact on applications such as low-latency
live video streaming.

Different CC algorithms follow their individual heuris-
tics to adjust the cwnd and update the CC state. Loss-based
CC algorithms, such as Reno and CUBIC, are overly sensi-
tive to packet losses. More recently, latency-based CC algo-
rithms, such as BBR, have been adopted widely to improve
the transport layer performance. While having multiple vari-
ants, BBRv1 mainly uses bandwidth and round-trip time
(RTT) estimation as the primary signals to adjust the cwnd.
BBRv2 and BBRv3 incorporate ECN and loss signals into the
CC state to compete more fairly with other CC algorithms.
BBRv3 has already been adopted as the default TCP CC al-
gorithm by Google for all internal WAN traffic and for all
Google.com and YouTube public Internet traffic [2].

In this paper, we evaluate the performance of different CC
algorithms with QUIC over Starlink, and improve QUIC per-
formance by leveraging the predictable handover patterns to
fine-tune the CC algorithm to avoid unnecessary cwnd reduc-
tion. We conduct experiments over a real Starlink network
and a repeatable Mininet-based emulation testbed. We target
QUIC, as its modular architecture and user space implemen-
tation allow more resilience towards potential changes in
handover behaviour both in Starlink and across different
constellations. Our preliminary results show that by incor-
porating the handover awareness into CC algorithms, the
QUIC throughput performance can be markedly improved
over Starlink, with the potential to be adapted to other LEO
satellite networks.

The remainder of this paper is organized as follows. In
Section 2, we introduce some existing work on measuring
the performance of LEO satellite networks, and efforts to im-
prove the performance of transport layer protocols over Star-
link. In Section 3, we present our methodology and demon-
strate the characteristics of Starlink that motivate the need
for additional tuning of CC algorithms. Then, we present
our novel handover-aware CC algorithm improvements. In
Section 4, we present our extensive evaluation results over
real-world Starlink networks and a Mininet-based emulation
testbed. In Section 5, we discuss future work. Finally, we
conclude our paper in Section 6.

2 Related Work
Cao et al. [1] proposed SaTCP, a CUBIC variant that fore-
casts the timestamps of satellite handover events or routing
updates by utilizing the predictability of satellite locations to
inform TCP to adapt its CC decisions accordingly. However,
their evaluation was solely limited to their LeoEM emula-
tor, which assumes the ground station (GS) can report the
disruption event in advance in order to counteract satellite

location prediction errors. Moreover, the LeoEM emulator
assumes that the Starlink UT can notify end devices (UE)
about upcoming handover events, and the nearby GS would
be responsible for estimating the upcoming intermediate
handover timestamps for the users associated with the GS
and notify them in advance. In reality, such information is
not available and this assumption is not physically plausible.

Pan et al. [8][9] measured the Starlink global backbone
topology and the performance of Starlink access networks.
It is worth noting that every Starlink UT is associated with
one home Point-of-Presence (PoP). Network traffic from the
UE is first sent through UT, then relayed through one or
potentially multiple satellites, when inter-satellite links (ISLs)
are being utilized, before reaching a landing GS. The traffic
is then tunnelled back to the home PoP before exiting to the
Internet. Thus, the cross-layer information sharing scheme
for improving CC algorithm performance in [1] is not only
infeasible but also impractical due to the proprietary “black-
box” nature of the Starlink infrastructure.

Tiwari et al. [12] investigated TCP throughput perfor-
mance with different CC algorithms over Starlink, namely
CUBIC, NewReno, BBRv1 and BBRv2. They found that BBRv1
and BBRv2 could only achieve the median throughput of
32% and 8% of the maximum capacity (maximum observed
throughput) over Starlink. They also noted that the results
were contrary to previous simulation-based studies [7], due
to the high loss rates alongside latency variations over real-
world Starlink networks. They found that BBRv2 performs
significantly worse than BBRv1, due to the introduction of a
greater sensitivity to loss factors in BBRv2. Thus, they con-
ducted a hyperparameter tuning to find the best (𝛼 , 𝛽) values
for BBRv2 over Starlink, to find a balance between the more
frequent RTT probing and the more robust loss resistance.

Li et al. [6] proposed StarTCP, which proactively stalls
transmission during handovers to avoid bursty losses and
erroneous congestion signals. They designed a Handover
Manager with kernel density estimation to identify the han-
dover timestamp every 15 seconds. In fact, existing research
has revealed that Starlink employed a time synchronized
controller globally to schedule handover events at the 12-
27-42-57 seconds every minute [9] [11]. On the other hand,
StarTCP employed an actor-critic model to learn the optimal
transmission stalling duration under different network con-
ditions with an offline training process. However, StarTCP
only evaluated their performance on a set of static network
emulation environments, lacking performance evaluation
over real-world Starlink networks. In addition, stalling trans-
mission may delay some packets that would otherwise have
made it across, increasing latency.

QUIC, as standardized by RFC 9000 [5], builds on top of
UDP and is implemented in user space. This provides a more
flexible and modular transport layer protocol compared to
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Figure 1: RTT and packet loss over Starlink [13], plotted against handovers. Right trace uses ISLs; left does not.

TCP. QUIC begins every connection in slow start with the
congestion window (cwnd) set to an initial value. During the
transmission process, the CC state changes over time as the
receivers send ACK frames to the sender with ACK ranges,
acknowledging that one or more packets are received. When
packet loss is detected, QUIC enters the recovery state, where
the cwnd is reduced and the sender retransmits lost pack-
ets. QUIC also supports the Explicit Congestion Notification
(ECN) mechanism once a path is validated as ECN-capable.

In this paper, we proposed our generic handover-aware
improvements to CC algorithms, and evaluated its practical
performance on real-world Starlink networks. We also built a
Mininet-based emulator to provide a repeatable and control-
lable environment, and utilized a publicly available Starlink
latency dataset [13] for our evaluation and reproducibility.

3 Methodology
In this work, we adopt picoquic[3] as our reference QUIC
implementation, as it implements most of the relevant fea-
tures of QUIC, is easily-extensible, and implements several
different CC algorithms including Reno, CUBIC, BBRv1 and
BBRv3. We note that some of these algorithms, created pri-
marily for TCP, have been optimized for QUIC.

3.1 CC Algorithm Performance Over
Starlink

Current CC algorithms can broadly be classified into loss-
based and delay-based categories.

3.1.1 Loss-based. Algorithms like Tahoe, Reno and CUBIC
rely on packet loss events as the primary signal for conges-
tion. When a link is sufficiently reliable, packet loss is caused
by intermediate routers dropping packets due to their buffer
capacity being exceeded. However, as observed by various

network measurements over Starlink [9], since the handover
events also produce packet loss, this is no longer a reliable
indicator of congestion, at least for periods during which
handover is in effect. In Figure 1, we plot two representative
latency traces along with number of packet loss events re-
ported by IRTT aggregated every second from [13], along
with the handover events. Packet loss appears to be cor-
related with the handover, especially when ISLs are used
(Seychelles UT). However, the packet loss events reported by
CC algorithms and applications over Starlink networks could
be categorized as: genuine path congestion, obstructions in
the UT’s field-of-view, packet reordering due to latency fluc-
tuations, or other factors. Thus, the ability to differentiate
the different sources of packet loss is critical.

3.1.2 Delay-based. Algorithms such as BBRv1 are delay-
based (referred to as model-based by its authors). BBR esti-
mates the bandwidth-delay product (BDP) and adjusts the
sending rate in order to prevent buffers in intermediate
routers from overflowing. This is accomplished by period-
ically measuring the RTT of the connection. Bandwidth is
adjusted by periodically sending at a higher rate (in case the
available bandwidth increases), followed by a drain period
whereby buffers can be “drained” if the elevated sending rate
was excessive. In practice, this causes BBRv1 to be completely
loss-insensitive. This is not always desirable. Therefore, the
BBRv1 implementation in picoquic is extended to support
ECNs and react to massive packet loss. BBRv2 and v3 in-
corporate loss-sensitivity in order to increase fairness with
other flows.

In addition, this family of algorithms is sensitive to RTT
and delay fluctuations. However, these characteristics are
subject to change after handover, as seen in Figure 1. We
may see the delay increase, decrease, or remain the same
depending on factors such as the distance to the connected
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satellite and the topology of the new connection determined
by SpaceX’s routing algorithm. Thus, this high delay vari-
ation will also hamper the algorithm’s ability to accurately
determine the bandwidth and delay of the connection if it is
not aware of the handover logic.

3.2 Handover-Aware Congestion Control
In order to counteract the impact of high packet loss rates
and delay fluctuations during handover periods, we pro-
pose a congestion window freeze mechanism. The cwnd freeze
mitigates the impact of packet loss by preventing the CC
algorithm from interpreting loss that is likely to be a result
of handover as indicators of network congestion. This is ef-
fective for both loss-based algorithms such as CUBIC, and
loss-sensitive delay-based algorithms such as BBRv2 and
BBRv3.

As Starlink utilizes a global synchronized controller for
scheduling satellite handovers on the 12-27-42-57 second
of each minute, we can correlate packet loss events to a
particular handover event. However, since the sender must
either wait for an ACK frame or a timeout event in order to
recognize that packet loss has occurred, the sender’s view
of the packet loss lags behind. In addition, in QUIC, the
acknowledgements may be delayed [4]. Thus, when a loss
event is detected, we check if the time that the packet was
sent coincides with a handover. If so, we prevent the loss
from reducing the cwnd, while still allowing it to increase.

We have observed that handover events typically last
about 100 ms. In our measurements, we choose the sender
location to be physically close to the PoP, thus minimizing
the impact of the transmission delay between the satellite
and the sender. If this were not the case, the sender would
have to incorporate an estimate of the delay to the PoP in
order to accurately determine which packets were affected
by handover.

Finally, this assumes that the sender’s clock is in sync in
order to determine the handover times. Otherwise, it would
be possible to estimate based on the latency pattern and
knowledge of the 15-second gap between handovers.1

4 Evaluation & Analysis
In order to comprehensively benchmark our modified CC
algorithms2, we perform experiments both in an emulated
environment based on real Starlink traces and with two
geographically-diverse active Starlink UTs. This allows us to
produce consistent and repeatable results, as well as to subse-
quently validate those results in real-world experiments. We

1Starlink has exposed the GPS receiver inside the dish through an NTP
server in Sept. 2024 through a firmware upgrade, so applications and trans-
port protocols are more likely to have a synchronized clock.
2Available: https://github.com/HeroHFM/picoquic_leo
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Figure 2: Finding optimal cwnd freeze time in BBRv3.

evaluate the cwnd freeze in BBRv3, as it is a delay-based algo-
rithm that is still sensitive to some types of loss in addition
to CUBIC, a pure loss-based algorithm. Due to picoquic’s
heavy optimization of CUBIC, we expect that our modifica-
tions will have a reduced improvement when compared to
the original versions of those algorithms.

4.1 Emulation
Our emulation3 is created in Mininet based on measurements
collected in [13]. The traces consist of IRTT latency mea-
surements collected at 10 ms intervals and iPerf3 throughput
measurements collected at 100 ms intervals. The emulation
synchronizes with the wall clock such that handovers occur
at exactly the correct fixed seconds in each minute. The band-
width and latency of the link is updated every 100 ms using
tc-netem and tc-tbf software available on Linux based on
the traces. This configuration results in packet loss probed
to be about 2–4% up/down.4 Although we do not vary the
packet loss during handover, the spike in RTT captured by
the traces will cause picoquic to perceive packet loss due
to retransmission timeout (RTO). Our emulation uses traces
from [13], where the UT is associated with the Starlink Seat-
tle PoP and does not utilize ISLs.

For our tests, we transfer a 256 MB file from a server run-
ning the modified CC algorithms to a client, and record the
transfer completion time. We perform 2 runs per trace over
5 traces. In Figure 2, we implement a symmetric cwnd freeze
interval before and after the scheduled handover timestamps
(12-27-42-57 seconds of every minute) in BBRv3. We see that
3Available: https://github.com/HeroHFM/starquic
4Packet loss values observed in traces from [13] indicate that this is only
slightly more elevated than expected.

https://github.com/HeroHFM/picoquic_leo
https://github.com/HeroHFM/starquic
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Figure 3: Transfer time for BBRv3 and CUBIC in
Mininet emulation. The cwnd freeze is ±100 ms.

an interval of ±100 ms (total of 200 ms) produces the best
results among those tested. This is longer than the handover
itself, and accounts for the latency between the GS and the
server. In Figure 3, we observe that our modifications to
BBRv3 stabilizes the inter-run variance, thus decreasing tail
latency. In addition, the mean transfer time reduces 26% from
65.5 s to 48.5 s. With the cwnd freeze, we see that BBRv3 is
almost competitive with BBRv1—an algorithm that is not
loss-sensitive.

We see that CUBIC is unaffected by the modification. This
is because we do not simulate loss during handover, and
thus the spurious loss recovery mechanism in picoquic’s
implementation of CUBIC prevents the loss due to the RTO
for packets that arrive eventually from lowering the cwnd.
This is effectively our method, achieved by different means.
However, this will not work as well with real packet loss. The
Figure 4 demonstrates that the modified algorithms indeed
increase the throughput achieved by the application during
the transfer for BBRv3.

4.2 Real-World Tests
In order to test our modified CC algorithms over real-world
Starlink networks, we run both the original and the modi-
fied CC algorithms through a Starlink UT located in Asia,
associated with the Starlink PoP in Tokyo and a UT located
in North America, with its PoP in Seattle. The servers are
located in datacenters close to their respective PoPs.

In Figure 5, we repeatedly transfer a 1 GB file from the
server to the client at different times in the day. For BBRv3,
the time required to complete the transfer decreases 14.5%
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Figure 5: Transfer time for BBRv3 and CUBIC over
Starlink.

and 35% in North America and Asia, respectively, when com-
pared to the baseline. We note that our modified CUBIC
performs faster in one location, but not the other. In the
highly-dynamic Starlink environment, there are many fac-
tors outside our control, such as the satellite beam allocation
for users in the same cell and the updated routing topology
after handover. However, we are able to control these in em-
ulation in order to provide a fair and repeatable comparison.

5 Future Work
We have identified that packet loss and delay spikes during
handover, and changes to the connection characteristics post-
handover, as reasons that current CC algorithms struggle to
utilize the full available bandwidth over Starlink networks.
In this work, we have addressed the packet loss and latency
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spike that occurs during handover, but an aspect that remains
unattended to is the change in latency and throughput af-
ter each handover. While the current research community
is still working methods to model this behaviour, we pro-
pose that for delay-based CC algorithms such as BBR, we
need to make modifications for them to achieve accurate
bandwidth and delay estimation over LEO networks. This
could be achieved by preventing BBR from measuring the
RTT during handover, when such measurements are likely
to produce an incorrect result. In addition, after handover,
we may force the algorithm to re-measure the bandwidth.
This ensures that the changes to the link condition are ac-
curately captured by the algorithm when they occur. These
changes would allow us to rapidly adapt to the new link
condition. Finally, supporting additional constellations such
as Eutelsat OneWeb should be possible, as they experience
handover as well. Adapting the algorithm to automatically
detect the constellation and distance from the PoP would
thus be useful.

6 Conclusion
In this paper, we investigated the impact of Starlink handover
events on the performance of different CC algorithms in
QUIC. By utilizing the predictable handover events every 15
seconds at fixed 12-27-42-57 seconds of every minute, we pro-
pose a CC-agnostic mechanism to avoid unnecessary cwnd
reduction. We adopted our mechanism with BBRv3 and CU-
BIC and conducted comprehensive performance evaluation
with both Mininet-based network emulation and real-world
Starlink networks. The results demonstrate the effective-
ness of our mechanism and by incorporating the handover
awareness into CC algorithms, QUIC performance can be
significantly improved up to 35% with straightforward modi-
fications to current CC algorithms. Future work may involve
more fine-grained tuning of the state changes in the algo-
rithms.
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