Crystallization-Driven Self-Assembly

Our research group has been at the forefront of the development of “Living” Crystallization-Driven Self-Assembly (CDSA) of Block Copolymers and other building blocks such as planar π-stacking organic molecules and metallocycles to form well-defined colloidally-stable 1D and 2D materials with tunable dimensions, spatially controlled surface and core chemistries, and potential applications from information storage and nanoelectronics to biomedicine. A focus has been on polyferrocenylsilane block copolymers, which were developed in our group, but our more recent work has also involved block copolymers with crystallizable π-conjugated or biodegradable segments. Together with our collaborators, we are currently investigating the fundamentals of the fascinating living CDSA process and also a range of potential applications of the resulting phase-separated thin films and core-shell nanostructures (micelles) as nanowires, nanoscopic barcodes, self-assembled heterojunctions, catalysts, and as magnetic dot precursors and in drug/gene delivery.

Selected Publications:

  1. Multidimensional Hierarchical Self-Assembly of Amphiphilic Cylindrical Block Comicelles
    Qiu, H.; Hudson, Z.M.; Winnik, M.A.; Manners, I.
    Science, 2015, 347, 1329.
  2. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends
    Qiu, H.; Gao, Y.; Boott, C.E.; Gould, O.E.C.; Harniman, R.L.; Miles, M.J.; Webb, S.E.D.; Winnik, M.A., Manners, I.
    Science, 2016, 352, 697.
  3. Two dimensional assemblies from crystallizable homopolymers with charged termini
    He, X.; Hsiao, M-S.; Boott, C.E.; Harniman, R.L.; Nazemi, A.; Li, X.; Winnik, M.A.; Manners, I.
    Nat. Mater., 2017, 16, 481.
  4. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly
    Boott, C.E.; Gwyther, J.; Harniman, R.L.; Hayward, D.W.; Manners, I.
    Nat. Chem., 2017, 9, 785.
  5. Uniform electroactive fiber-like micelle nanowires for organic electronics
    Li, X.; Wolanin, P.J.; MacFarlane, L.R.; Harniman, R.L.; Qian, J.; Gould, O.E.C.; Dane, T.G.; Rudin, J.; Cryan, M.J.; Schmaltz, T.; Frauenrath, H.; Winnik, M.A.; Faul, C.F.J.; Manners, I.
    Nat. Commun., 2017, 8, 15909.
  6. Long-range Exciton Transport in Conjugated Polymer Nanofibers Prepared by Seeded Growth
    Jin, X.-H.; Price, M.B.; Finnegan, J.R.; Boott, C.E.; Richter, J.M.; Rao, A.; Menke, M.; Friend, R.H.; Whittell, G.R.; Manners, I.
    Science, 2018, 360, 897.
  7. Tailored Multifunctional Micellar Brushes via Crystallization-Driven Growth from a Surface
    Cai, J.; Li, C.; Kong, N.; Lu, Y.; Lin, G.; Wang, X.; Yao, Y.; Manners, I.; Qiu, H.
    Science, 2019, 366, 1095.
  8. Cellular Uptake and Targeting of Low Dispersity, Dual Emissive, Segmented Block Copolymer Nanofibers
    Street, S.; He, Y.; Jin, X.; Hodgson, L.; Verkade, P.; Manners, I.
    Chem. Sci., 2020, 11, 8394.
  9. Tailored Self-Assembled Photocatalytic Nanofibers for Visible-light Driven Hydrogen Production
    Tian, J.; Zhang, Y.; He, Y.; Jin, X-H.; Pearce, S. Eloi, J-C.; Harniman, R.L.; Alibhai, D.; Ye, R.; Philiips, D.L.; Manners, I.
    Nat. Chem., 2020, 12, 1150.
  10. Scalable and Uniform Length-Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via Living Polymerization-Induced Crystallization-Driven Self-assembly
    Ellis, C.E.; Hernandez, J.D.G.; Manners, I.
    J. Am. Chem. Soc., 2022, 144, 20525.
  11. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles
    Street, S.T.G.; Chrenek, J.; Harniman, R.L.; Letwin, K.; Mantell, J.M.; Borucu, U.; Willerth, S.M.; Manners, I.
    J. Am. Chem. Soc., 2022, 144, 19799.
  12. High Resolution Cryo-Electron Microscopy Structure of Block Copolymer Nanofibers with a Crystalline Core
    Tian, J.; Xie, S.-H.; Borucu, U.; Lei, S.; Zhang, Y.; Manners, I.
    Nat. Mater., 2023, 22, 786.
  13. Uniform Segmented Platelet Micelles with Compositionally Distinct and Selectively Degradable Cores
    Tong, Z.; Xie, Y.; Arno, M.C.; Zhang, Y.; Manners, I.; O’Reilly, R.K.; Dove, A.P.
    Nat. Chem., 2023, 15, 824.
  14. Mechanism of Action and Design of Potent Antibacterial Block Copolymer Nanoparticles
    Parkin, H.C.; Street, S.T.G.; Gowen, B.; Da-Silva-Correa, L.H.; Hof, R.; Buckley, H.L.; Manners, I.
    J. Am. Chem. Soc, 2024, online.