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Abstract

Large language models (LLMs) have created remarkable possibilities for analyzing and generating language data and
have been integrated into several fields aiming to transform them, including education. While most research efforts focus
on LLMs in typical education or social robots, limited applications of LLMs have been reported in special education.
Moreover, there is a profound lack of combined research in LLM-based social robots in special education. In this work,
we argue that although LLMs and social robots have demonstrated their potential to advance special education separately,
their combination is not yet fully exploited, and further research is required to enable such use. The first objective of this
work is to review relevant literature to assess the feasibility of developing LLMs on social robot platforms for use in
special education. The second objective of this work is to reveal related challenges, limitations, opportunities, and ethical
considerations to provide insights, aiming to subsequently formulate guidelines for the efficient integration of LLM-based
social robots into special education practices. To this end, the third objective of this work is to propose a thoughtful
framework, aiming to formulate a safe and inclusive learning environment for students in special education, suggesting
actionable steps that could be followed by educators, developers and stakeholders, towards address the unique needs and
challenges of students with diverse learning requirements.

Keywords Large Language Models - Social robots - Special education - Artificial intelligence - Educational
technologies

1 Introduction

Large Language Models (LLMs) are artificial intelligence
(AJ) algorithms based on transformer models, a type of deep
neural network. They incorporate billions of parameters and
are pre-trained with vast language data to learn underlying
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patterns and language rules. The latter enables them to
understand and generate original content [1].

Recently, LLMs are playing a leading role in a wide range
of natural language processing (NLP) applications involv-
ing language generation [2], automatic text summarization
[3], text comprehension [4] and classification [5]. The most
up-to-date LLMs, such as the Generative Pre-trained Trans-
former 4 (GPT-4) [6] and Large Language Model Meta Al
(LLaMA) [7], have proven their capability to comprehend
and generate efficiently human-resembling text. Thus, they
are adopted as powerful tools for multiple applications, in
public health and education. Therefore, the use of LLMs
has been investigated for applications in the field of mental
health as supportive tools [8] in the medical/clinical field:
for diagnosis of mental distress [9], for cognitive impair-
ments such as Alzheimer’s disease [10], to predict the
mini-mental state examination score related to cognitive
impairments [11], for ASD detection [12] and more.

In the educational context, the use of LLMs deems ambi-
tious; early applications reveal the potential of LLMs in the
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educational teaching/learning process for knowledge trac-
ing [13], socio-emotional support of online conventional
agents [14], production of learning resources [15], as well
as for several different subjects such as programming [15],
mathematics [16, 17], science [18], and medicine [19].

Social robots have also been used in education as teach-
ing assistants, tutors, or peers [20]. Their implementation
has reported increased academic and cognitive outcomes,
while their acceptance from teachers, students, and par-
ents is nowadays undoubtable [21]. The benefits of the use
of social robots have been extended to special education,
towards improving the cognitive, emotional, and social
development of children with certain impairments, such
as autism spectrum disorder (ASR), hearing impairments,
down syndrome, neuro-developmental disorder, cerebral
palsy, and more [22].

Based on the above, the empowerment of education
using LLMs, combined with social robots, could bring out
enhanced possibilities. On the one hand, LLMs have been
integrated into robotics towards intelligent interactions and
fulfilled autonomy for perception, control, decision-making,
and path planning [23], mainly for industrial applications
[23, 24]. On the other hand, integrating LLMs in social
robots for education, specifically for special education, is
still in its infancy.

To this end, the first main objective of this work is to
identify the potential of LLMs for social robots in spe-
cial education. The scope is to bring together all related
research in LLM-based social robots in special education
and investigate all referenced implementations, highlight-
ing challenges and identifying opportunities for their effi-
cient integration into special education practices. It should
be noted that, to the authors’ knowledge, there is no similar
review article up to date focusing solely on LLMs for social
robots in special education.

In 2021-2022, 7.3 million students between the ages 3
and 21 received special education and related services under
the Individuals with Disabilities Education Act (IDEA) in
the United States, equal to a percentage of 15% of all pub-
lic-school students [25]. Based on the same source, the four
most common disability types are specific language disabil-
ities (32%), speech or language impairments (19%), health
impairments (15%), and autism (12%).

According to the United Nations Educational, Scientific
and Cultural Organization (UNESCO), special education
is a general framework of learning strategies that must be
adjusted to respond to these educational needs [26]. Accord-
ing to the United Nations, based on Article 24 of the Con-
vention on the Rights of Persons with Disabilities (CRPD),
there is a rightful claim for every person with mental or
physical impairments to be educated. Individuals with spe-
cial needs should not be excluded from society, and any
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action should be undertaken so as for their mental and emo-
tional state to be sustained at an optimal level [27].

United Nations International Children’s Emergency
Fund (UNICEF) in 2022 acknowledged the significance
of Assistive Technologies (ATs) for children with neuro-
development disorders, and Social Robots are included
among their recommendations [28]. ATs bolster students
with special educational needs (SEN) to alleviate any dis-
abilities regarding their senses or mentality so that they can
be socially active and receptive to acquiring various skills
[29]. Furthermore, Al in special education is considered to
be another assistive educational tool for integration, trigger-
ing positive impacts [30]. SEN students can achieve their
learning goals, as they relish general freedom in the learning
process, through flexible and adaptive personal tutoring. Al
technologies encompass various application sectors, espe-
cially LLMs, and reinforce the learning process in special
education [31].

Based on the above, the importance and ever-increasing
need for special education initiatives and the impact of both
LLMs and social robots in the learning process are evident.
Therefore, the combination of LLMs and social robots has
the potential to revolutionize special education.

Despite the potential of LLM-based social robots in spe-
cial education, there is no relevant research to include field
trials, current applications, their potential impact, limita-
tions, challenges, and related ethical concerns. Moreover,
while little is known about the impact of LLMs in educa-
tion, nothing is reported regarding the impact of LLM-based
social robots in either typical or special education, regarding
students’ motivation, engagement, learning outcomes, and
more.

Reviews on LLMs for human-robot interaction [23], on
robot-assisted special education [32], on social robots for
special education [22], on LLMs for typical education [33],
have been conducted in the literature. However, their com-
bination has not previously been investigated. A preliminary
discussion of Al as a technology with the potential to sig-
nificantly change special education practices been published
recently [34], yet it deals with Al software and future con-
siderations and does not report implementations of LLMs
on social robots for special education. Therefore, this work
constitutes the first approach to advance the knowledge and
understanding of LLMs’ current role and potential for social
robots in special education. Apart from the systematic report
of all relevant research in the field, the second main objec-
tive of this work is to contribute to the corpus of knowledge
by highlighting related challenges and opportunities and
providing insights into how LLM-based social robots can
be effectively integrated into special education practices and
fundamentally promote them. Towards this direction, the
third main objective of this work is to propose a framework
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for the integration of LLM-based social robots in special
education.

Based on the three main objectives of this works, three
research questions (RQ) have been formulated to structure
and guide the conducted research:

1. RQI: “What is the current status of LLM-based social
robots in special education?”.

2. RQ2: “What are the challenges, limitations and consid-
erations of applying LLM-based social robots in special
education?”.

3. RQ3: “Itis possible to formulate a framework for LLM-
based social robot integration in special education?”’.

In conclusion, the contributions of this work can be sum-
marized as follows:

e This work constitutes a systematic report dealing with
the current role and potential of LLMs for social robots
in special education, which has not previously been re-
ported in the literature.

e This work underlines limitations, challenges, and ethical
concerns regarding the integration of LLM-based robots
in special education.

e This work investigates for the first time the potential im-
pact of LLM-based social robots in special education,
regarding students’ motivation, engagement, learning
outcomes, and more.

e This work, based on the gathered evidence, proposes
the first general framework for the integration of LLM-
based social robots in special education, providing ac-
tionable steps that could be taken by educators, develop-
ers and stakeholders.

The rest of this work is structured as follows: Sect. 2
includes a brief overview of LLMs and discusses the use
of social robots in special education. The research method-
ology followed in this work is presented in Sect. 3, while
Sect. 4 investigates LLM-based social robots in special
education, including the investigation of LLMs for social
robots and LLMs in special education separately. Section 5
discusses research findings, limitations, challenges and ethi-
cal issues for the integration of LLM-based social robots in
special education, while Sect. 6 introduces a framework for
the integration of LLM-based social robots in special educa-
tion. Finally, Sect. 7 concludes the paper.

2 Background

Large Language Models (LLMs) and social robotics inde-
pendently demonstrated transformative potential across var-
ious domains, including education, healthcare, and social
interactions. LLMs, with their ability to understand and
generate human-like language, provide adaptive conver-
sational tools that cater to individual needs. Social robots,
on the other hand, engage users through physical presence
and interactivity, often serving as assistants, companions,
or therapeutic agents. In special education, where students
usually require tailored and responsive support, integrating
these two technologies opens unique avenues for enhancing
learning and social engagement.

Combining LLMs with social robots creates a power-
ful synergy where the conversational intelligence of LLMs
complements the interactive embodiment of social robots.
This combination is promising for special education, where
diverse learning requirements require adaptive, emotion-
ally sensitive, and personalized interventions. This section
reviews the foundational aspects of LLMs and social robots
and sets the stage for understanding their joint application.
We highlight how each technology contributes distinctively
to supporting students with special needs. This background
is crucial to appreciate the challenges, opportunities, and
ethical considerations in deploying LLM-based social
robots in special education contexts.

2.1 LLMs - overview

LLMs are machine learning models with large architectures,
able to generate context full of coherence and accuracy, rep-
licating human speech by calculating the probability of a
word following a certain input. LLMs can distinguish pat-
terns in words and predict each following word after being
trained with large language datasets, namely corpus. Pre-
trained LLMs are fine-tuned to find practical use in tasks
such as translation, summarization, domain-specific knowl-
edge generation, etc [35].

The foundations of LLMs can be tracked in the 40s,
when McCulloch and Pitts [36] introduced the concept of
artificial neural networks (ANNs), while in the 50s, the first
rule-based language model was presented by IBM-George-
town University who developed a Russian-English transla-
tion system [37]. Another important development was the
first chatbot, ELIZA, launched in the 60s [38]. Eliza was
the earliest example of a language model; it was based on
rules and pattern-matching techniques. Although a simple
model, Eliza could identify keywords from the user input
and match a pre-programmed answer. This was a signifi-
cant milestone in the development of language models, as
it demonstrated the potential of natural language processing

@ Springer



168

Progress in Artificial Intelligence (2025) 14:165-189

and paved the way for more sophisticated models to come.
In the 90s, the introduction of Long Short-Term Memory
(LSTM) [39] revealed new opportunities for developing
deeper neural networks able to capture statistical patterns
of larger amounts of data, aiming to create statistics-based
language models. In the 2010s, recurrent neural language
models (RNNLM) were introduced, generating more natu-
ral texts than previous approaches [40].

At the same time, Stanford’s CoreNPL suite was launched
[41], enabling sentiment analysis, along with GoogleBrain
[42] which provided word embeddings towards clarifying
text comprehension. All previously mentioned enhance-
ments contributed to developing Google’s Neural Machine
Translation System [43]. However, the burst of LLMs was
marked after the development of transformer models, intro-
duced in 2017 [44]. Based on transformer architectures, in
2018, the Generative Pre-trained Transformer (GPT) model
[45] and Bidirectional Encoder Representations from Trans-
formers (BERT) [46] were developed. The next version of
GPT, GPT-2 [47], used unsupervised pre-trained models for
supervised tasks towards multi-tasking learning while train-
ing without fine-tuning. OpenAI’s GPT-2 is regarded as the
first LLM. At that time, other transformer-based LLMs were
also developed, such as the Megatron-LM [48]. In 2020,
GTP-3 was released [1], including more advanced features
in answering questions, translation and searching, and being
able to generate more natural language output with less fine-
tuning, forming the basis of ChatGPT [49, 50].The latest
version, GTP-4 [6], offered even more opportunities to ana-
lyze nonverbal data and generate even more realistic textual
output.

Indicatively, some of the most recent LLM models
launched in 2023 are the following:

o GPT-4: Released in March 2023 by OpenAl, it is the
most updated version of the GPT series and is used
mainly to generate human-like language [6].

e PalLM 2: Released in May 2023 by Google, Al empow-
ers the chatbot of Google, Bard [51].

Fig. 1 Milestones in the history
of LLMs

e LLaMa-2: Released in July 2023 by Meta Al and Mi-
crosoft, it is free to use. LLaMa 2— Chat is a model for
dialogues [52].

e Falcon: Released in September 2023 by the Technology
Innovation Institute [53], it owns three variants depend-
ing on the number of its parameters.

Figure 1 depicts the milestones in the history of LLMs as
considered by the authors.

2.2 Social robots in special education (SE & SR)

Social robots are robots that can interact with humans in
a socially acceptable way [22]. Special education refers
to the educational services provided to students with dis-
abilities. Special education, among others, differs from the
typical one in the sense that it does not follow a common
curriculum for all students of the same class. Special edu-
cation needs to be designed to meet the special needs of
each different impairment and, furthermore, the personal
needs of each individual student. Social robots can be
highly captivating and can motivate students to try harder
on tasks that otherwise would refuse to undertake due to
their impairment [54]. Moreover, Al capabilities denoted to
social robots allowed for efficient and adaptive human-robot
interactions. Social robots offer adequate ‘safety’ to students
to try practicing skills without the fear of judgment or criti-
cism, thus reducing their anxiety and focus on the goals of
each educational task [55].

Social robots gave insight into social-based engagement
in education and, in particular, met a high demand in the field
of Special Educational Needs and Disabilities [56]. Every
student possesses a palette of heterogeneous emotional and
behavioral characteristics in the learning process within the
classroom, especially the vulnerable ones struggling with
physical and mental issues [57]. Adaptive learning strate-
gies to the uniqueness of each individual are paramount
[22, 58]. Social robots have proven their effectiveness as
therapeutic tools in special education towards promoting
social, cognitive, and intellectual skills, assigned in dif-
ferent roles: teacher, assistant, or peer [20], as well as for
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several different impairments, ASD, mobility issues, cere-
bral palsy, attention deficit hyperactivity disorder (ADHD),
hearing impairments, Down syndrome, oncological disor-
ders, neuro-developmental disorders (NDD) [22]. It should
be noted that the use of social robots in special education
is not the focus of this work; it is a subject that has been
extensively researched in the literature, and as such, does
not need to be systematically reviewed again in the context
of this paper. Yet, it is useful to discuss how LLMs are able
to contribute to them.

Considering that LLMs are capable of generating adap-
tive and interactive conversations, it is obvious that their
integration could enhance the verbal interactivity of a social
robot. Moreover, emphatic Al [59], which is set upon the
mutual exchange of emotions in human-robot interaction,
could endow social robots with adequate emotional con-
tent so that any input call can be used to adjust its reac-
tion by mimicking human feelings. An educator in the form
of a social robot, with the aid of a Generative Pretrained
Transformer is advocated [60]. To this end, GPT-3 has been
proven to achieve “depth and complexity” [61] in learning
procedures through speech, e.g., conversation, complex
questions, and more. According to Bhat et al. [61], whether
the user or the robot has either a passive or an active role,
GPT-3 provides a multi-layered cognitive approach, as the
model can readily adjust to the user’s demands. The gen-
eral perception of freedom of speech through a social robot
forms prosperous dynamics in the scientific community.

3 Research methodology

The conducted research methodology was based on the
three research questions (RQ) aligned with the main objec-
tives of this works according to the guidelines provided by
Kitchenham [62] to conduct systematic literature reviews:

1. RQI: “What is the current status of LLM-based social
robots in special education?”.

2. RQ2: “What are the challenges, limitations and consid-
erations of applying LLM-based social robots in special
education?”.

3. RQ3: “Itis possible to formulate a framework for LLM-
based social robot integration in special education?”.

These three research questions are used as the backbone to
structure this work. Therefore, each question guides a spe-
cific section of the manuscript, as seen in Table 1, ensuring
cohesion with the main objectives, as well as a clear and
narrative flow.

In this work, the PRISMA statement [63] was followed to
conduct a clear, transparent and comprehensive systematic
review. The PRISMA diagram of the conducted research
methodology is illustrated in Fig. 2.

The original research was conducted in the Scopus data-
base. Scopus is considered as the most comprehensive and
authentic database of scholarly publications since it indexes
only curated content of high quality that is annually re-eval-
uated by an advisory board [64]. The same research terms
were also used in Google Scholar database so as to enhance
the number of retrieved articles.

At the first step of the research methodology, four tar-
geted queries (Q) were executed within the article title,
abstract, and keywords, focusing to identify (Identification)
the relevant literature on LLMs for social robots in special
education:

1. Ql: “Special Education” AND “Social Robots” (SE &
SR): returned 40 documents. Since our research needs
to include LLMs, the latter query is secondary and it is
needed to structure the background of social robots in
special education, therefore only review articles from
the results were considered, limiting the documents to
two.

2. Q2: “Large Language Models” AND “Social Robots”
(LLM &SR): returned 21 documents.

3. Q3: “Large Language Models” AND “Special Educa-
tion” (LLM &SE): returned zero documents. Yet, the

Table 1 Structure of the paper based on the research questions (RQ), and overview of the final set of publications for each targeted query (Q) per

database based on the defined taxonomy

RQ Q Taxonomy Number of publications Scopus Refs. Scholar Refs. Section; subsection
Background on social robots in special education Section 2;
1 SE & SR 2 [22, 54] - 22
LLMs in social robots Section 4;
2 LLM & SR 16 [65-74] [75-80] 4.1
LLMs in special education Section 4;
3 LLM& SE 5 [81-85] [86] 42
RQ1 LLMs for social robots in special education Section 4;
4 LLM & SR & SE 2 - [87, 88] 43
RQ2 Related challenges, limitations and considerations Section 5
RQ3 Framework for the integration of LLM-based social robots in special education Section 6
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Fig.2 The PRISMA diagram of (
the applied research methodology ‘

Identification of studies via databases and registers

Identification

Records identified from:

Scopus (n=70)
(Q1=40, Q2=21, Q3=9, Q4=0)

Google Scholar (n = 108)
(Q1=45, Q2=51, Q3=10, Q4=2)

(n=178)

Records assessed for eligibility

Records excluded due to
eligibility criteria

(n=95)

Document type
Publication stage
Keywords

Language

Subject area

v

Screening

(n=83)

Records screened

Records not retrieved
(n=58)
Duplicates
Relevance

\4

(n=25)

Included

Studies included in review

broader term of “special education” seems to limit the
results, while by using the term “Education” instead,
research returned 818 documents. Therefore, special
education approaches were located withing the bibliog-
raphy by using more refine searching rules by naming
the most common types of special education categories,
(e.g., learning disabilities, language disabilities such as
dyslexia, and autism). Query of “Large Language Mod-
els” AND “autism” returned six documents, “dyslexia”
returned one, “learning disabilities” returned one, “lan-
guage disabilities” returned zero, and “speech impair-
ment” returned one. In total, the latter approach returned
9 documents. Note that only applications in special edu-
cation were included, therefore LLM-based diagnostic
tools for impairments detection were not included, as
consider related more to healthcare rather than special
education.

@ Springer

4. Q4: “Large Language Models” AND “Social Robots”
AND “Special Education” (LLM & SR & SE) returned
zero documents.

The fourth query (Q4) comes as an inclusion of all the pre-
vious ones. However, even though LLMs have been incor-
porated into social robots and used in special education,
conjoint research on LLM-based social robots in special
education is scarce in the literature, indicating an uncharted
research area. It should be noted that LLMs have caught
research attention, especially GPT-based models, after
2019. Potential application fields and limitations have not
yet been fully depicted; therefore, any further integration in
specialized domains is still in its infancy. During this first
step of the research methodology, 178 documents in total
were located.

During the second step of the methodology (Screening),
the following eligibility criteria were applied:
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(a) The document types must be either book chapters, jour-
nals, or conference papers (For Q1 only review articles).

(b) The literature must be at the final publication stage.

(c) The keywords are limited to the words specified for
each query.

(d) The text must be written in English language.

(e) The papers must belong to the subject area of Computer
Science or Engineering.

Eligibility criteria concluded in 83 documents. Finally, at
the third step of the methodology (Included), information
extraction from the abstracts and main text of the documents
and classification of the literature retrieved from the previ-
ous steps took place to delete duplicates between the two
databases, include only the publications related to the sub-
ject focusing on applied works, and classify them based on
the search queries, concluding to 25 documents.

All defined works from the conducted research are refer-
enced within this article, either in the text or in pivot tables,
and are equally used to draw conclusions.

To this end, a taxonomy is defined, to categorize the
25 gathered documents systematically, so as to provide a
clear framework enabling easier navigation to their content,
facilitating their comprehensive analysis, towards making it
easier to identify patterns, reveal trends, gaps and relation-
ships among them.

The proposed taxonomy aims to classify and organize the
documents into four hierarchical categories based on their
content, as imposed from the conducted research, i.e., the
corresponding queries (Q):

1. SE & SR: Documents reporting the use of social robots
in special education.

2. LLM & SR: Documents reporting the use of LLMs in
social robots (SR).

3. LLM& SE: Documents reporting the use of LLMs in
special education (SE).

4. LLM & SR & SE: Documents reporting the combina-
tion of LLMs and social robots in special education.

The 25 selected papers are listed in Table 1 and grouped
based on the defined taxonomy. Note that the documents
retrieved regarding the use of social robots in special educa-
tion (SE & SR) are used to define the backgrounds provided
in Sect. 2.2.

The rest of the paper is structured based on the research
questions. Therefore, each of the following sections aims
to answer one research question: Sect. 4 for RQ1, Sect. 5
for RQ2, and Sect. 6 for RQ3. For the structure of Sect. 4,
where the aim is to review the current status of LLM-based
social robots in special education, the defined taxonomy is
used to organize the examination of the gathered documents

in three distinct subsections (4.1, 4.2 and 4.3), as summa-
rized in Table 1.

4 Review of the literature

Early research on the integration of LLMs in education
showed that it could meliorate both teaching and learning
experiences [65]. The learning opportunities seem end-
less, according to Kasneci et al. [66]. The authors claim
that LLMs could be integrated into education for all lev-
els of education, as well as for professional development.
For learning tasks, LLMs could be used (1) in elementary
schools to support students in practicing writing and reading
by providing corrections, to encourage students on critical
thinking, to summarize or interpret information for them for
reading comprehension, to generate questions to organize
their study, (2) in high schools, to additionally help on ana-
lytical thinking, and problem-solving, to generate exercises
for practice for a variety of high-school curriculum sub-
jects, (3) in universities [66], to support research by pro-
viding valuable resources on highly specialized scientific
topics, (4) from remote learners, to guide turn-taking during
conferences, to engage participants, (5) from professional
learners, to generate domain-specific knowledge, (6) from
learners with special needs, to empower them with abilities
they lack [67, 68].

For teaching tasks, LLMs could be used by teachers for
(1) personalized teaching, to adapt lessons to each individual
student’s need, (2) for creating teaching material that could
be diverse, targeted, and of all levels of difficulties, (3) for
reading and writing tasks, as to summarize texts and high-
lighting main points to better deliver the lesson to students,
(4) for evaluation of students, to help them correct essays
regarding grammar and spelling issues, to check reports for
plagiarism [66, 69, 70].

Therefore, the use of LLMs in typical education mainly
focuses on personalized learning to individual students’
needs, on educational content generation used from both
students and teachers, as well as for assessment, i.e., grad-
ing, and instant feedback. In special education, the use of
LLMs remains in the same context. Yet, a more specialized
use is intended, focusing more on improving the accessibil-
ity for students with disabilities, e.g., with content genera-
tion in accessible formats, such as Braille, audio, or text,
for students with specific impairments, dyslexia, non-verbal
students, etc. Moreover, for students in need of personalized
behavioral and emotional support, such as in autism, LLMs
can provide adequate support to manage their learning envi-
ronment more effectively, by providing highly customized
learning plans. In terms of technical and implementation
aspects, LLMs in typical and special education differ in the
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used datasets; in typical education the datasets are designed
to cover a wide range of subjects and educational levels,
while in special education the datasets content is more spe-
cialized, focusing on each different underlying impairment.

Overall, the potential of LLMs is anticipated at all stages
of education for both teachers and students, as well as in
industry to enhance the control process of soft robotics
[71-73]. While many research articles discuss the potential
of LLMs in education [74—77], there is no solid work to
deal with their prospects in special education. Furthermore,
while the use of social robots in special education has been
at the forefront for many years, there is limited research on
the use of LLM-based social robots in special education.

In what follows, the integration of LLMs in social robots,
the use of LLMs in special education, and the combination
of the latter two in LLM-based social robots for special edu-
cation are exhaustively investigated, following a structure
for this section as imposed by the proposed taxonomy, aim-
ing to provide answers to RQ1.

This section aims to present the current status so as to con-
clude the stemming opportunities of such a combination and
present all related challenges towards providing insight and
guidelines for the use of LLM-based social robots towards
their efficient integration into special education practices. It
should be noted here that most of the referenced works in
the following, do not report numerical evaluation results, as
they mainly simulate proposed frameworks to underscore
the transformative potential of LLMs for robots and in edu-
cational applications. The system evaluation is mostly con-
ducted by subjective questionnaires from the participants.
Thus, in cases where technical aspects are reported, such as
datasets and performance results, the latter are referred in
the main text and not included in the commutative Tables
due to their limited number. However, the used LLM model
for all cases is referenced in the Tables.

4.1 LLMs for social robots (LLM & SR)

The evolution of socially interactive robots and their integra-
tion into human daily lives have been supported by simul-
taneous enhancements from other related scientific fields
towards even increased human-robot interaction. Zhang et
al. [78] conducted an extended review on the advancements
of LLMs in human-robot interaction based on the recent
progress in the field, aiming to provide directions for future
research.

To this end, virtual reality (VR) has been coupled with
LLMs and social robots [79] to deliver an immersive inter-
active English language teaching experience. The integra-
tion of LLMs in human-robot interaction has previously
shown promising results; Ye et al. [80] proposed a Chat-
GPT-based assistant robotic arm (Franka Emika Panda
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robot arm) and concluded that such an integration increased
the trust in human-robot collaboration due to the more effi-
cient acquired communication skills of the robotic arm.
The latter motivated Bottega et al. to adapt LLMs to their
language learning games, integrating the GPT-4 model into
the virtual robot of their VR application. Results indicated
adaptability and quick feedback from the robot, which facil-
itated the interaction and engaged the users (no numerical
performance evaluation results are reported).

Murali et al. [81] introduced a framework that used Chat-
GPT to develop a group-facilitation social robot. Dyads of
participants interacted with the social robot to select the
best candidate out of six fictional resumes for a manager’s
position. The authors’ findings include a high percentage of
speaker label identification (77% accuracy from transcribed
tecta and 90% word level accuracy), indicating the potential
of LLM:s as a diarization tool for future systems.

Billing et al. [82] presented the first integration of Ope-
nAl GPT-3 with Pepper and Nao social robots. The authors
facilitated an open verbal dialogue with the robots, sharing
the potential of using LLM-based social robots in multiple
dialogue systems. The technical implementation integrates
three different services that constitute the complete dialogue
system. No datasets or performance evaluation results are
reported. Based on the latter original idea, Axelsson and
Skantze [83] developed an application of an LLM-based
social robot as a presenter, e.g., as a museum guide. The
authors introduced an original approach for lexicalization,
i.e., transforming semi-logical representations of chosen
language statements from a knowledge graph into natural
language. A feedback classifier was also adopted to collect
data, i.e., users’ multimodal feedback, from the presenta-
tion. The feedback was classified as positive, negative, or
neutral for updating the grounding status in the knowledge
graph accordingly, thus affecting the procedure of the pre-
sentation. The evaluation of the system by 43 participants
who interacted with it showed that LLM-based robot pre-
senters are considered more human-resembling and flexible
compared to the same static implementation of the system,
which does not consider the users’ feedback. The evaluation
process was conducted by a multiple-choice questionnaire.

Adaptability to users’ feedback is critical for establishing
an effective human-robot interaction. In [84], the authors use
LLMs for real-time emotion generation in a human-robot
dialogue. More specifically, they used GPT-3.5 for predict-
ing the emotion of a robot’s turn in real-time, exploiting the
history of the ongoing dialogue, and the robot gestured the
predicted emotion with facial expressions. For the system
evaluation, the authors collected subjective questionnaire
data. To evaluate the prediction capabilities of the model,
a prediction confusion matrix was calculated for all emo-
tions using predicted and actual image labels, reporting best
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performance for “surprise” of 65% and lowest for “anger”
with 41%. Overall, results showed the ability of the model
to efficiently generate emotions in real-time, which is criti-
cal in LLM-based social robot applications where emotional
interaction matters, as it is in companionship, therapy, spe-
cial education, or even in customer service.

Lozano et al. [85] examined the ability of a proposed
LLM framework implemented on social robot EVA to
assume nonverbal cues by the user. More specifically, the
proposed framework included object recognition capabili-
ties and an LLM to propose meals to cook based on the
detected ingredients. Nonverbal communication is crucial
in cases where words are either absent or not enough to
obtain valuable input from nonverbal cues such as gestures,
posture, and eye gaze. The authors conducted two scenarios
to illustrate the use of their proposed framework, while no
performance results were reported.

In [86], user data from Twitter social media accounts
are considered to engage users in generated personalized
dialogues with an LLM-based social robot Mini. First, the
robot uses a summarization LLM to present an overview of
the news, and then a Long-Form Question-Answer model
(LFQA) to generate related questions. The usability of the
robot was evaluated by 17 participants who freely interacted
with the robot. More specifically, the evaluation referred to
the usability of the proposed conversation skill to interact
with the robot by using a questionnaire of 5-point Likert
scale. Results indicated both positive (expressiveness of the
robot, diversity of topics, updated information) and negative
aspects (delays and processing time). It should be noted that
Mini is a social robot designed to assist the elderly with mild
cognitive impairments. Therefore, the proposed system is
designated to be applied to social robots perceived as com-
panions for the elderly. The same robot was employed in [87]
to demonstrate the generation of diverse speech that could
dynamically adapt to different user profiles. Paraphrasing
was also used to prevent dialogues from turning repetitive
and monotonous. The evaluation of the user-adapted seman-
tic description generation reported 4.87 s response time for
the entire pipeline, while for the models used for paraphrase
generation the inference time ranged between 0.88 and
4.04 s, which is encouraging in both cases and shows their
great potential when applied to social robots.

Irfan et al. [88] also used a Furhat robot and an LLM
to derive multi-modal open-subject dialogues between the
robot and senior users. The conducted workshop included
the evaluation of 28 elderly participants. The evaluation of
the system was conducted through a pre- and post- interac-
tion recorded audio interview with the participants, as well
as from the video data analysis of the participants’ inter-
action with the robot. Results indicated smooth and varied
in topics conversations, while many challenged were also

reported (included in Table 2). Khoo et al. [89] conducted a
similar research study by using the social robot QTrobot and
12 senior participants, aiming to provide personalized inter-
actions and thus improve the user experience. The system
was evaluated with written surveys and observations, indi-
cation the need to improve users’ experience through person-
alized interaction (no numerical evaluations were reported).
Wang et al. [90] proposed a framework to generate conver-
sation responses with expressive robot behavior, involving
robot Haru, directly from an LLM. The system evaluation
was done through a pilot study with 12 participants answer-
ing a short free-text experiential survey. Results indicated
hallucinations and repetitions, as well as naturalness, enter-
tainment, helpfulness and empathy from the robot’s side.
No numerical evaluation results were reported.

Jokinen et al. [91] employed LLMs to make Furhat robot
chat about culinary delights. Example queries and responses
of the robot were reported to demonstrate the linguistic ver-
satility and feasibility of the system, while no evaluation
results were reported. In [92], robot Pepper was powered
by a dialogue system based on GPT-3 to produce responses
to 31 participants’ verbal inputs. The system was evaluated
through questionnaires. Results revealed high expectations
from the robot, strongly connected to human-human inter-
action. Borg et al. [93] employed Furhat as a virtual patient
to create a platform for clinical reasoning in rheumatology.
The platform was evaluated by 15 medical students, com-
pared to a semi-linear virtual patient platform, by evaluat-
ing the self-perceived accrual of clinical reasoning skills.
Results revealed the preference of the students for the robot
platform in terms of learning effect and authenticity. In [94],
a dialogue system based on LLMs was embodied in a social
robot. The system was an ongoing work, and no applica-
tion and evaluation results were yet reported. Kim et al.
[95] used robot Pepper to investigate the distinctive design
requirements for using LLMs in robots, that may be variable
depending on the task and content. The user study included
scenarios and 32 participants answering a questionnaire.
Results indicated that LLM-based robots elevated expecta-
tions for sophisticated non-verbal cues.

Table 2 includes additional details about the selected
literature (see Table 1) on LLM-based social robots, while
Fig. 3 illustrates used social robots included in Table 2.

Although all studies referenced in this subsection focus
on the integration of LLMs in social robots but not on the
special education framework, all presented methodologies
and results can be extended to provide broader implica-
tions for LLM-based social robots in special education. The
integration of VR, human-robot interaction methodologies,
used LLMs and selected social robots, presented in this sub-
section, reveal trends and guidelines that represent potential
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Table 2 Integration of LLMs to social robots

Ref. Social robot LLM Scope Application Limitations
[79] Jubileo GPT-4 Human-robot real- English teaching VR game Lacks sentiment analysis and
open-source istic interaction dynamic corresponding facial
simulated expressions, not including auto-
humanoid matic pronunciation error detection
robot
[81] Furhatrobot ChatGPT Building a facilita- Speakers diarization for multiparty con-  Not enough domain-specific
tion social robot  versations by interacting with a robot knowledge to entirely understand
real-world interaction, incorrect
turn-taking probably due to the
rules of English grammar
[82] Pepperand GPT-3 LLMs-based Conference participants-robot open dia-  Based on cloud service Google
NAO human-robot inter- logue on random topics to experience the Cloud speech-to-text and the
action dialogue possibilities and limitations of LLMs in ~ NaoQi text-to-speech, more like a
system live human-robot interaction systems verbal approximation for text-based
GTP-3
[83] Furhat robot GPT-3 LLM-based Presentation of paintings in a museum to  Retention tests revealed that objec-
interactive robot  a set of participants tive learning outcomes from the
presenter interactive robot were limited
[84] Furhat robot GPT-3.5 Emotion gen- Evaluated with 47 participants through a Delay in the robot’s expression,
eration in human-  card sorting game specially designed to  server overload in cases, limited
robot dialogue elicit emotions to evaluate the influence  emotional categories, inability
of emotional expressions of the robot on  to generate long-term emotional
users responses
[85] EVArobot  ChatGPT Nonverbal The robot recognizes the presence of < not referenced>
communication ingredients on a plate and the LLM ana-
lyzes them to provide potential recipes
[86] Robot Mini BERT, RoBERTa, Personalized ver- Interaction with participants to evaluate ~ Similar profiles of participants,
Davinci for sum- bal human-robot  the ability of the system to maintain an ~ unable to update the static personal
marization, BERT, interaction engaging personalized conversation data of users
mTS5, Davinci for
question-answer
[87] Robot Mini  GTP-3, TS, mTS5, Natural conversa- Paraphrase generation and user-adapted ~ Paraphrasing may result in loss of
PEGASUS, and tional human-robot semantic description approaches to allow meaning, interaction delays, limited
BERT2BERT experience free interaction or generate appropriate ~ computational power to run some
conversation topics LLMs
[88] Furhat robot GPT-3.5 Personalized com- Interaction with 28 senior users to Hallucinations and obsolete infor-
panion robot evaluate the human-robot interaction and mation, and disengagement cues,
identify primary obstacles resulting in confusion, frustration,
and worry, robot interrupting the
user, slow, superficial and repetitive
[89] QTrobot GPT-3 Personalized com- Interaction with 12 senior users to Needs to improve flow of conversa-
panion robot evaluate the human-robot interaction and tion, testing in real-world scenarios,
identify primary obstacles integration of nonverbal cues
[90] Tabletop Llama-2-70B-chat  Dynamic and 12 human participants engaged in con-  Automatic speech recognition
Robot Haru expressive versation for feedback and error analysis problems but LLM could recover,
conversations small class of LLM errors includ-
ing hallucinations and repetitions
[91] Furhat robot CodeLlama, Chat in English Case study with no participants Viabilty of the approach to develop
Llama2 about Japanese cooperative and multilingual social
cooking using a robot applications
Japanese knowl-
edge base
[92] Pepper GPT-3 Robot autono- 31 participants and three questionnaires ~ Longer interactions or more inter-
mous responses to evaluate the experience actions were needed to decrease the
to human verbal variance
input
[93] Furhat robot GPT-3.5-turbo Creation of virtual Tested on 15 medical students througha Minor problem of hallucinations

patients

Wilcoxon signed rank test to compare the
Robot vs. a traditional approach
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Table 2 (continued)

Ref. Social robot LLM Scope Application Limitations
[94] ARIrobot  Alanav2 Multi-party Tested and improved through regular No context-dependent gestures yet
conversations user tests where the robot acted as a
receptionist in a hospital waiting room
[95] Pepper GPT-3.5 Human-robot A user study with 32 samples comparing LLM-powered robot was less

interaction

tasks

an LLM-powered social robot against
text- and voice-based agents through
a mixed-factorial design with scenario

preferred in one of the tasks, due
to communication difficulties
and the potential anxiety during
collaboration

Fig.3 Social robots empowered with LLMs according to the examined bibliography: (a) Furhat [102]; (b) EVA [103]; (¢) Mini [104]; (d) QTrobot

[105]; (e) Pepper [106]; (f) Nao [107]; (g) Jubileo [79]

and scalable tools to be extended and integrated into modern
special education environments.

4.2 LLMs in special education (LLM& SE)

While LLMs are considered powerful transformative tools
in the field of education [31], the subfield of special edu-
cation has not yet fully embraced their capabilities. LLMs
have the potential to offer assistance to educators by gen-
erating customized resources and planning lessons towards

creating personalized education strategies to support stu-
dents with special educational needs.

Applications of LLMs in special education involving
testing and evaluation of specific LLM-based interventions
to a group of students are not yet reported in the literature.
However, LLMs have been proposed to provide support
to students with disabilities, yet not in a systematic way
(Table 3). Indicatively, the authors in [96] focused on evalu-
ating LLM’s engaging ability in empathetic, adaptable, and
contextually suitable interactions during therapeutic inter-
ventions with hypothetical ASD impairment. The LLM
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Table 3 Application of LLMs in Ref.  Impairment Scope Application LLM Limitations
special education group
[96] High-func- Simulated Evaluation by experts of Develop-  Not consistent in
tioning autistic real-life LLM’s empathy, adapt- ment of  complex emo-

adolescents therapeutic ability, communication, and prompts to tional scenarios,
scenarios on  engagement during therapy  appro- not efficiently
hypothetical priately deep responses,
patients guide an  varying levels of
LLM engagement
[97] Children with LLMs Classification of 200 LLaVA Lack of ability to
Autism for image images in autistic and non- 1.5 Large process multiple
classification  autistic class (among other ~ multi- images, produces
applications) modal hallucinations and
model misinformation
[98] Attention Defi- Al writing A model of executive- GPT-3 No limitations were
cit Hyperactiv- workflow for  cognitive capacity to assess reported
ity Disorder reduced cogni- how to manage the cognition
(ADHD) tive loads of tasks and workloads, and
support a design matrix for
assistive tools and processes
[99]  Adults with Assisted Evaluated in 19 adults with  LaMDA  May not yet has
dyslexia email writing  dyslexia sufficient accuracy
prototype to meet the needs of
writers with dyslexia
[100] Children with  Assisting chil- Focused on enabling persons Multi- No limitations were
Central Audi-  dren with dif-  with disabilities by tapping  modal reported
tory Process-  ferent learning into the latest advances in Gen-
ing Disorder styles such as Al not tested erative
(CAPD),and  visual learners Al using
Visual Process- or auditory Visual
ing Disorder learners language
(VPD) models
ViLT and
GIT
[101] People Social com- Preliminary use case to GPT-4 The communication
with motor munication boost social chat with gaze phase, i.e., update
and speech through eye inputs to generates multiple and improve the
impairments gazing sentences of conversation process of content

in real time based on the
relationship of people in
conversation

preferences and
social closeness,
needs more testing
for its stability

was developed using a set of specially developed prompts
to guide it through appropriate interaction with ASD ado-
lescents. The performance evaluation of the LLM included
empathy, skills to adapt and communicate, as well as
engagement and abilities to launch a therapeutic-appropri-
ate interaction, assessed by clinical psychologists and psy-
chiatrists with varying levels of experience in ASD. Specific
evaluation metrics were selected in line with the standards
followed in psychological and autism therapy, forming an
evaluation scorecard. The assessment was conducted by
a panel of clinical phycologists and psychiatrist using the
developed scorecard. The model could validate the emo-
tions of patients; however, it was not always consistent. It
could properly communicate, adapt, and respond in all cases
and was revealed to be engaging even though its responses
were not as deep as expected from a therapeutic session.
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Overall, the proposed approach revealed its potential as a
supplementary tool in ASD therapy with adolescents, leav-
ing room for further improvement. It should be noted here
that the use of LLMs in special education should always
be supplementary and used in the presence of experienced
professionals who could adapt any technological tools to the
specialized needs of each student’s disability.

Islam et al. [97] explored the efficiency of LLMs to per-
form image classification Among others, a dataset (Autistic
Children Facial Image Data Set) including images of faces
of children with and without autism was used, concluding
in 83% of correct classification accuracy after fine-tuning.
Packer et al. [98] implemented a review article focusing
on LLMs for people with Attention Deficit Hyperactivity
Disorder (ADHD), Autism Spectrum Disorder (ASD), and
other learning difficulties, exploring the cognitive load that
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was associated with complex writing tasks, and how the
latter affected users with certain impairments. Goodman et
al. [99] proposed an LLM-based inference to assist adults
with dyslexia in writing emails. The interface was evaluated
by 32 participants, regarding the frequency and duration
of writing new emails and replies through a questionnaire.
Results indicated the usefulness and consistency of the
system (no numerical evaluation results were reported).
In [100], the authors suggested an assisting tool based on
LLMs for people with visual or auditory difficulties, able to
dynamically adapt to strengths and abilities of the individ-
ual user. The authors mapped the challenges and proposed
a design approach for their system; therefore, no evalua-
tion performances were reported. Fang et al. [101] focused
on people with motor and speech impairments to enhance
their social communication skills with gaze inputs by using
GPT-4. Separate user datasets were created, containing
preferences and social closeness, and were used to generate
tailored sentence suggestions for multi-turn conversation. A
prototype test was conducted with three patients, reporting
engagement and average conversation round around three
topics more than 12, in 3 min.

Further utilization of LLMs in special education to
empower students with special needs includes the following
applications:

e LLMs can be combined with speech-to-text/ text-to-
speech capabilities for people with visual impairments
[108]. The latter possibility was recently launched in
September 2023 by Meta and Ray-Ban, envisioning a
supporting tool able to answer questions, summarize
text, and read information to enhance the quality of life
of the visually impaired. Future updates are expected
to increase the efficient applicability of this integration
further.

e Students with hearing impairments could benefit from
LLMs in education by generating real-time texts, as well
as,

e Students with learning disabilities could employ them to
make the comprehension of complex texts easier [109].

e LLMs could be used combined with embedded devices
to generate speech for students with speech impairments.

It should be also noted the novel introduction of Large Lan-
guage and Vision Assistant models (LLVAs) that have also
been incorporated in special education settings. Islam et al.
[97] introduce LLVAs to detect children with autism from
face images, underscoring the transformative potential of
such models and their wide range of applications in real-
world scenarios. For this reason, the latter application has
been included in Table 3, although considered more as a
supporting diagnostic tool.

As research on LLMs is ongoing, their application in spe-
cial education is expected to evolve so that both students
and teachers to benefit in practice.

4.3 LLM-based social robots in special education
(LLM & SR & SE)

Based on all the above, it can be foreseen that the deploy-
ment of LLM-empowered social robots in special educa-
tion holds significant potential. LLMs are anticipated to
provide social robots with adequate Al awareness, empa-
thy, and emotional adaptation to engage students and effi-
ciently guide personalized interactions in special education.
The conducted literature review revealed only two reported
implementations of LLM-based social robots in special edu-
cation, indicating that related research is still in its infancy
(Table 4).

In their work, Lim et al. [110] enabled the social robot
Pepper to understand American sign language towards
enhancing nonverbal interaction for hearing impaired
people. Even though the implementation of Lim et al. is
not practically applied to special education settings, it is
attributed to this field since it is the only related research
to combine LLMs, social robots, and people with special
needs. The authors developed a lightweight model for sign
language recognition and produced context-aware gestures
with Pepper using ChatGPT. The system was evaluated by
empirical observations, aiming to highlight strengths and
challenges. Results indicated the profound potential lying
in human-robot interaction towards making technological
tools, such as social robots, accessible for all. Mishra et al.
[111] introduced an LLM pipeline with GPT-2 and BART
towards generating text that the robot NAO could vocal-
ize. The SOCIALIQA dataset was used for the generation

Table 4 Integration of LLMs to social robots for applications in special education

Ref.  Impairment Scope Application Social LLM Limitations
group robot
[110] Hearing Nonverbal interaction Social interaction with sign language Pepper ChatGPT  Limited three-dimen-
impairment recognition sional understanding
in depth prediction
[111] Autism Teach perspective- To generate texts that the robot vocalizes to use NAO GPT-2, The system needs
taking in a therapy in a clinical setting in the presence of experts. BART to be more versatile

session using gener-

ated text and reinforcer

The robot’s role is of a stimulator, prompter,

in scenarios to be
taught
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tasks. Context generation by using GPT-2 reported accuracy
of 51%, indicating that the model generated data similar to
the test set. BERTscore was used to evaluate question and
option generation tasks, reporting high precision (up to
90%), recall (up to 91%) and F1-score (up to 90%). Statisti-
cal analysis of self-reports from domain experts was also
considered. The robot was proposed to be used in a clinical
setting in the presence of experts for autism interventions.
The robot had multiple roles, e.g., of a stimulator, prompter,
and reinforcer, out of which the stimulator role had auton-
omy in the text generation the robot used.

It should be noted, though, that this integration experi-
ences limitations and challenges and brings forward ethi-
cal concerns regarding their development and application in
special education settings, discussed in the following.

5 Discussion: challenges, limitations, and
ethical considerations

In what follows, the challenges, limitations and consider-
ations of applying LLM-based social robots in special edu-
cation are identified, following a structure for this section
as imposed by the proposed taxonomy (Table 1), aiming to
provide answers to RQ2.

5.1 Challenges

Challenges refer to problems or difficulties arising during
the process of integrating LLMs in social robots for spe-
cial educational purposes, that need to be overcome. The
latter may be robot-, LLMs-, or special education- related
challenges.

5.1.1 Robot-related challenges

While NAO robot is one of the most commonly used social
robots in special education, especially in applications with
ASD students, early work on the integration of LLMs in
social robots indicated preferable alternatives to NAO. Most
research works included in Table 2 (37.5%) use the Furhat
robot.

A powerful LLM alone is not adequate to develop an
efficient human-robot interaction environment. Successful
interaction with social robots also implies speech, voice,
emotions, and body language. In human-robot interaction
in special education, eye gaze is considered as a measure of
engagement and joint attention. Moreover, since LLMs are
engaging students in realistic conversations, social robots
need to have a natural and adaptable appearance to match
the conversation. However, NAO robot, along with several
other popular social robots, conveys an emotionless facial

@ Springer

expression. Furhat owns a back-projected face that permits
facial expressions to be displayed, including movements
of eyes and brows and head gestures. These capabilities
enable the robot to communicate emotions, both perceived
and conveyed. Emotional awareness of robots can be highly
engaging since users are experiencing a more realistic and
immersive interaction. The latter is essential in special edu-
cation. Note that one of the reported limitations in Table 2
is the integration of nonverbal cues that are expected to
improve the flow of conversation. Alternative robots that
hold an animated faceplate are also Moxie, QTrobot, and
EVA. The last two are also reported in Table 2, justifying the
use of social robots that can display emotions as preferable
when combined with LLMs.

Moxie [112] has been used for Mental, Behavioral, and
Developmental Disorders as a rehabilitation tool for chil-
dren. It is a socially interactive robot and a powerful thera-
peutic tool, as children are engaged in games and activities
and interact with stories of Moxie. The overall interaction
through emotion, speech, and expression can be a great asset
in therapy intervention with children. It is worth noting that
Moxie is connected to ChatGPT and further uses the cues
of the interaction with the aid of GPT to be adjusted to the
user’s needs. Moxie, along with QTrobot, were also recom-
mended as appropriate brain/mind-controlled robotics [113]
for students with brain damage or neurological disorders
who face difficulties in verbal communication. QTrobot
recently integrated the latest LLM technologies, employing
ChatGPT for language understanding and generation [105].

GPT models are considered to be the most notable and
well-known LLM models, yet Bard, LLaMa 2-Chat, and
other models are viable alternatives in the field of special
education for social robots. Moreover, research should take
into account other options for social robots, which already
have been cooperating with ChatGPT, like LOONA [114],
Cozmo [115], and Emo Robot [116]. LOONA has the poten-
tial for graphic programming and its main module, GPT
Wonderland, encompasses a lot of activities for children.
Ameca is thought to be the most advanced humanoid robot
at the moment [117], while OpenAl and 1X have partnered
to produce a robot that will incorporate GPT-5 [118].

While one aspect of the LLMs integration into robots is
the appropriate robot’s design, another is the robot’s voice.
Mini robot is designed to interact in Spanish, therefore
LLMs integration in Mini needs to also include a module
to translate prompts from/to Spanish. Multilingual models
need to be adopted in such cases, to also include alternative
languages at their corpus. However, as reported in the exam-
ined literature, the translation of one language to another and
back, may result in paraphrasing and distort the meanings.

One additional constraint for LLMs to be integrated into
social robots is related to the computational power required
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for LLMs to run in real-time, either locally or in the cloud.
Most social robots have limited resources, while several
other modules are simultaneously running on the robots
along with LLMs, e.g., for vision tasks and motor control,
leading to either processing delays or server overload in
some cases. The latter is the reason for the reported limita-
tions in efficient human-robot interaction, causing delays in
the robot’s dynamic facial and verbal expressions, translated
as difficulties from LLMs to provide adequate empathy and
adaptability. The achievement of real-time interaction can
be quite challenging when using LLMs; natural language
processing in real-time while retaining responsive actions
requires both efficient algorithms and hardware. Finally,
LLMs are mainly trained on text data and may not inher-
ently comprehend the physical context in which social
robots operate. Integrating sensory input and contextual
awareness remains a challenge.

Robot selection in all cases depends on the applica-
tion and the target group. Not all robots display the same
capabilities, while others are specially designed to sup-
port certain age groups (as Mini for the elderly), or certain
impairments (as PARO for dementia, or NAO and Milo for
autism). Nowadays, several types of social robots are avail-
able in the market, each with different features and capabili-
ties to interact with humans. The selection of the appropriate
robot must rely on its suitability for each target group, as
well as its LLM integration capabilities in terms of techni-
cal characteristics. Therefore, the LLM-based social robot
selection must be performed by considering technical and
pedagogical criteria, specific to each educational scenario
and student target group. Selecting the appropriate type of
social robot can be handled as a multi-criteria decision-
making (MCDM) problem, considering technical factors
(e.g., autonomy), capacity (e.g., memory), economic factors
(e.g., costs), interaction capabilities (e.g., reported improve-
ment), social factors (e.g., acceptance), and more, that need
be equally weighted under the prism of user impairment
characteristics (e.g., autism characteristics) towards indicat-
ing the most appropriate robot for each use case.

An additional robot-related challenge concerns the inte-
gration of multiple models on the robot, and their synchro-
nization. While LLMs are used for communication, other
models are simultaneously run on the robot for behav-
ioral and emotional analysis. Their synchronization can be
achieved through modular architectures of the robots’ soft-
ware. Modular architectures allow each module to operate
separately its specific function, while it communicates with
other modules through well-defined interfaces. Real-time
processing is required to analyze facial expressions, vocal
tones, posture, etc., and determine the overall status of the
user. The robot, thus, collects and analyzes data from its sen-
sors continuously and outputs users’ emotions, behaviors,

and more. A central control system gathers the outputs of all
modules and uses them as inputs to drive the LLMs context,
and subsequently the robot actions. Finaly, feedback loops
are used to adjust the robots’ language and gestures, so as to
match the LLMs response. The latter process is challenging
due to (1) the complexity of integration resulting from the
different technical demands of each model, (2) the real time
processing requirement so as to handle computational loads
and provide fluidity in the human-robot interaction, (3) the
difficulties involved in contextual understanding, (4) and
the inherent hardware limitations in movements and facial
expressions of robots, not always aligning with the software
output.

5.1.2 LLMs-related challenges

In some cases, LLMs can be harmfully biased or overfit-
ted, leading to hallucinations, repetitions and superficial
conversations, as seen in the reported limitations in Table 2.
Additionally, LLMs may generate content that, although not
clearly censored, could be considered unsuitable for special
education applications. The latter results in frustration and
confusion, provoking negative emotions in the users. Since
the emotional stability of children is a key component to
promoting special education initiatives, the LLMs need to
be as reliable as possible. For this reason, it should be inves-
tigated whether the use of emotion recognition software
[119] in combination with appropriate prompt engineering,
can ensure proper LLM alignment, i.e., ensuring that the
LLM can act safely and as expected.

In general, the understanding and interpretation of LLMs’
outputs could be challenging. Transparent decision-making
is crucial in social robotics, especially when dealing with
sensitive or critical tasks such as those related to special
education. The users’ acceptance and trust, referring to both
students and special educators, are clearly affected by the
performance of LLMs on the robots. Unexpected responses
from LLMs can impact user acceptance, emphasizing the
need for careful design and user experience considerations.

At this point, it is worth noting that the literature lacks
real-world scenarios’ applications. Evaluation of LLM-
based social robots in special education has not been
reported yet. Therefore, the fidelity of interventions with
LLM-based social robots is not measured, restricting the
ability to study the practical outcomes of their use.

5.1.3 Special education-related challenges
LLMs designated for special education need to be trained
with specific data. LLMs are developed to understand and

generate human language in the typical way. However, com-
munication with students with special educational needs is
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far from typical. Each impairment group has different ways
to express and communicate and has different needs, e.g.,
ASD children cannot engage and lack verbal and nonver-
bal communication skills, children with dyslexia have dif-
ficulty expressing themselves through speech but do not
have learning difficulties or lack of communicational skills,
children with hearing impairments cannot process linguistic
information but can process nonverbal cues, etc. It is, there-
fore, evident that since each impairment group has different
needs, distinct LLMs need to be developed specifically for
each group and integrated with various social robots tailored
to those groups [120]. The latter requires domain-specific
knowledge that needs to be integrated into the models in
terms of verbal/nonverbal cues and appropriate educational
scenarios for each impairment. Fine-tuning of LLMs for
specific social groups requires labeled datasets and exper-
tise. Acquisition and annotation of diverse datasets for mul-
tiple social scenarios is expected to be challenging.

Moreover, there is a need to maintain an equilibrium
between standard responses and personalized educational
interventions. The LLM-based robot needs to maintain both
general coherent and personalized dialogues to resemble a
human therapist. The challenge in special education is not
only to deliver an LLM-based robot that simply understands
and gives feedback but also to tailor it to specific individual
needs.

5.2 Limitations

Limitations refer to constraints or boundaries restricting
the process of integrating LLMs in social robots for spe-
cial educational purposes, i.e., the restrictions within which
this integration must operate. Limitations can also be robot-,
LLM-, and special education- related. Limitations are
closely related to the aforementioned challenges, and they
only differ in the sense that challenges can be overcome
whereas limitations set boundaries that cannot be overcome.
Thus, limitations are considered challenges that cannot be
overcome.

By thoroughly examining the challenges of the integra-
tion of LLMs in social robots for special education purposes,
inherent limitations have been identified. In what follows,
these main limitations are briefly mentioned.

5.2.1 Robot-related limitations

Robot-related limitations are related to the physical and
social interaction limits provided by machines such as
robots. Even by using the most advanced LLM, social
robots could not fully replicate the wide range of human
social interactions and emotions, communicated through
facial expressions and complex gestures, that are essential
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in special education educational interventions, especially
for children with social and emotional impairments.

5.2.2 LLM-related limitations

Advanced LLMs can easily stimulate a conversation, yet
there is an inherent difficulty in the true understanding of
the needs of students with special needs. The latter poses
limitations in the interactions, due to the lack of a deep com-
prehension of a student’s emotions and needs.

Moreover, each students’ needs differ significantly even
among the same impairments; there are several scales to
evaluate autism, since each case has a different severity and
requires different therapeutic approaches. Thus, LLMs may
appear empathetic, yet they fall short in fully supporting dif-
ferent students with complex variable emotional and social
needs.

LLMs require large datasets to train upon each special
impairment case in special education so as to function effec-
tively. Data privacy and related ethics, though, pose limita-
tions in acquiring such sensitive personal data, limiting the
capabilities of personalized feedback of the robot. Even in
case of accessing inclusive data, the fairness of an LLM-
based robot could be limited from biased training data.

5.2.3 Special education-related limitations

LLMs are not endorsed to make therapeutic or educational
decisions, therefore they cannot fully replace a human ther-
apist or teacher in special educational settings.

Another limitation is related to accessibility and costs
of acquiring and maintaining an LLM-based social robot.
Special education institutions may struggle to have access
to such technologies, especially in underfunded or rural
regions, e.g., rugged areas, remote mountainous villages or
islands.

The identified limitations are summarized along with
their implications in Table 5.

5.3 Ethical considerations

As already mentioned, LLMs can generate content that
might be biased or inappropriate. In special education, the
latter could lead to unfair treatment or misinterpretation of
the needs and emotions of students with disabilities. All
LLMs-generated tasks need to obey basic ethical and edu-
cational standards, ensuring that the models are trained on
unbiased data and that they would not generate discrimina-
tive or unfair results for persons with special needs. Biased
Al models can influence critical decision-making. How-
ever, it is challenging to fully comprehend how Al models
make those decisions, especially in complex LLM models.
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Table 5 Limitations of integrating LLMs in social robots for special

educational purposes

Category Description of limitation Implications
Robot- Physical Interaction Limits the effective-
Related Limits: Social robots cannot ness of emotional
Limitations  fully replicate the complex- engagement and inter-
ity of human expressions action, particularly for
and gestures, which are students with social
crucial in special education. impairments.
Hardware Constraints: Delays in responses
Limited processing power can lead to less
in social robots restricts the  natural interactions,
real-time processing capa-  reducing the robots’
bilities required for dynamic effectiveness as empa-
LLM interactions. thetic companions.
LLM- Lack of True Emotional Can impact the
Related Understanding: LLMs quality of interac-
Limitations  lack genuine emotional tions, particularly for
comprehension, resulting students requiring
in responses that may not sensitive, personal-
fully resonate with students’ ized engagement.
needs.
Data Privacy and Ethical  Limits personalization
Concerns: Access to large,  and adaptability of
diverse datasets for training responses; raises con-
LLMs in special education  cerns about sensitive
settings is restricted by data protection.
privacy concerns.
Inconsistent and Biased May lead to confusion
Outputs: LLMs may pro- or frustration among
duce biased or inappropriate students; requires
content due to training data  educator oversight to
limitations, especially in prevent potentially
sensitive contexts. harmful interactions.
Special Limited Accessibility in Reduces the potential
Education-  Underfunded Regions: for equitable access
Related High costs and maintenance to this technology

Limitations

General
Limitations

requirements limit access to
LLM-based social robots in
certain areas.

Inadequate Fit for Diverse
Needs: Students with special
needs vary greatly in their
requirements, which makes
it difficult for LLMs to cater
to all needs effectively.

Complex System Integra-
tion: Real-time synchro-
nization of LLMs with
emotional and behavioral
analysis models is techni-
cally challenging.

in special education,
especially in rural or
remote locations.

LLMs cannot fully
replace human educa-
tors or therapists,
particularly in
complex cases
requiring nuanced
understanding.
Reduces system reli-
ability and response
fluidity, impacting
the robot’s ability

to deliver seamless,
adaptive interactions.

Explainable and responsible development of Al needs to
follow specific guidelines and regulatory standards, such as
the IEEE Ethically Aligned Design [121] or the Al Ethics
Guidelines from the European Commission [122]. Human
inspection of the LLMs outputs is required to identify any
possible biases and interfere accordingly. Therefore, the role
of special educators is preserved at all times; LLM-based

social robots are assistive tools and should always be used
under their supervision and responsibility.

The use of such technological tools involves the acqui-
sition and processing of students’ sensitive personal data,
raising questions about their management. As LLMs con-
stantly evolve, the development of ethical guidelines
regarding data privacy and security policies is necessary
for protecting data from authorized access and providing
students and their parents the necessary transparency on
the way data is handled before consenting to participate in
any intervention. Informed consent from students and their
guardians is necessary, as to be fully aware of how data is
used, stored and protected. Data security measures through
encryption techniques, secure data storage and regular secu-
rity inspections, could safeguard sensitive information from
unauthorized access. Since the models designated for spe-
cial education need to be trained on private data for person-
alized treatments, additional ethical concerns arise in case
the developed models are later available publicly. Data pro-
tection regulations such as General Data Protection Regu-
lation (GDPR) [123] and Consumer Online Privacy Rights
Act (COPRA) [124], need to be obeyed, towards ensuring
the ethical use of LLMs in education through the provision
of guidelines for handling and protecting sensitive student
data.

The phycological impact on students due to these ethical
implications is significant [125]. Lack of trust and safety
can lead to anxiety and refusal to participate in LLM-based
robotic interventions. Perceived bias can affect self-esteem
and create feelings of frustration and marginalization. Deci-
sion making from a non-explainable Al system could make
students feel powerless and out of control over the pro-
cesses. Moreover, the generated stress over these new tech-
nologies can overall affect their mental health [126, 127].

Considering ethical and safety restrictions, as mentioned
above, a safe and stable environment should be created so
that children with special needs can be effectively treated.
Additionally, research has uncovered the scientific com-
munity’s limited interest in children’s mental safety when
interacting with Al technologies [128]. This natural imita-
tion of a human-like voice can create emotional bonds with
children. Nevertheless, issues of toxic dependencies should
be addressed. The prime objective is the social integration
of children with special educational needs in society, not
any form of bonding, which could result in self-isolation.
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6 A framework for LLM-based social robots’
integration in special education

Addressing the aforementioned challenges involves inter-
disciplinary efforts involving expertise in robotics, natural
language processing, special education, and ethics, aiming
to contribute towards the successful integration of LLMs for
social robots in special education.

To this end, a framework of LLM-based social robots
in special education needs to be formulated to ensure that
their conscious use would only be beneficial. Implementing
LLMs via social robots in the field of special education is
a demand which is still under-researched. The mainstream
design approach is through Cloud (GPT-J) since cloud ser-
vices can ensure the privacy of data [129]. Whether children
have SEN or not, when they are exposed to Al, they have to
be protected due to the vulnerability of their age. For this
reason, recently, children’s fundamental rights in human-
robot Interaction have been developed based on UNICEF’s
Al Policy Guidance [128].

Every impairment in children with special educational
needs may vary, causing diverse symptoms; moreover,
multiple disorders may coexist in the same person. There-
fore, guidelines should be formed and adopted by LLMs,
addressing limitations, learning strategies, emotional and
psychological approaches, and more. LLMs are the novel
key element of communication within a social robot. The
robot should take various actions, like initiating a conver-
sation, maintaining it, evaluating, explaining, and more,
within the learning process. This learning cycle of steps
must be properly adapted, planned, and executed. Before
applying LLMs in the field of special education, it is of high
importance to enumerate all their potential functions, which
are particularly useful for children with special needs. Such
students may often have limited or zero verbal communica-
tion or may undergo outbursts of negative emotions, e.g.,
anger or disappointment. The benefits of the integration of
LLMs in social robots are clearly evident, yet the type of
intervention a system should adopt in times of an ongoing
crisis is still a matter of debate.

Based on all the above, it is evident that integrating an
LLM-based social robot into special education requires a
thoughtful framework to address the unique needs and chal-
lenges of students with diverse learning requirements. In
what follows, aiming to provide answers to RQ3, a frame-
work is proposed, involving 20 subsequent steps for three
different roles:
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6.1 Educators

1. Needs assessment and goal setting: First, a thorough
assessment needs to be conducted involving special
education experts to identify specific learning goals,
challenges, and objectives for students with different
abilities and needs. Such an assessment includes a set of
specialists, such as special education teachers, psychol-
ogists, speech therapists, etc., provide their valuable
insights regarding the special needs of each individual
student.

2. Customization and personalization: Design the LLM
integration to allow for customization and personal-
ization. Tailor the learning experience based on indi-
vidualized special education plans, learning styles, and
progress tracking for each student. Therefore, different
goals would be set for each student, tailored to their
abilities and challenges.

3. Align with curriculum standards: Ensure that the
LLM aligns with special education curriculum stan-
dards, facilitating seamless integration into existing
special education programs and lesson plans.

4. Environmental considerations: Educators need to
access the setup of the classroom to make sure that it
is appropriate to accommodate sensory needs of both
students and robots and minimizes their distractions.

6.2 Developers

5. Social robot selection: Based on the different abilities
and needs of each student, as well as the different learn-
ing goals, the appropriate social robot is selected, so as
to possess the requirements for delivering the designed
special education plan.

6. Accessible user interface: Develop an accessible
and user-friendly interface that accommodates vari-
ous assistive technologies, ensuring that students with
diverse abilities can interact effectively with the LLM-
based social robot and the special teachers can easily
operate.

7. Multimodal interaction: Implement multimodal inter-
action capabilities, incorporating visual, auditory, and
tactile elements to support students with different sen-
sory preferences and needs for both verbal and nonver-
bal interaction.

8. Adaptive learning approaches: Integrate adaptive
learning technologies that can adjust the content, pace,
and difficulty levels based on the progress of individual
students.
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9. Speech and gesture recognition and feedback: Incor-
porate robust speech and gesture recognition capabilities
to facilitate communication for students with language
and hearing or other impairments. Provide constructive
and immediate feedback to support learning.

10. Emotional intelligence: Embed emotional intelligence
features into the LLM to recognize and respond appro-
priately to the emotional states of students, fostering a
supportive and empathetic learning environment.

11. Data privacy and security: Implement robust data pri-
vacy and security measures to protect students’ sensi-
tive information. Comply with relevant regulations and
guidelines to ensure the ethical use of special student
data.

12. Regular assessment and progress monitoring: Inte-
grate assessment tools within the LLM and by using
embedded sensors on the social robot to monitor stu-
dents’ progress. Provide real-time feedback to educators
to support ongoing improvement.

13. Assistive technology integration: Ensure compatibility
of the system and ability to integrate with other assistive
technologies, such as VR, to address the diverse needs
of students with disabilities.

14. Continuous improvement and updates: Establish
a framework for continuous improvement, regularly
updating both the LLMs’ and the robots’ capabilities
based on feedback, emerging research, and advance-
ments in technology.

6.3 Stakeholders

15. Expertise collaboration and support: Provide
resources and training for educators to integrate the
LLM-based social robot into their teaching practices
effectively. Encourage collaboration between teachers,
special education professionals, and technology experts.

16. Access to technology. Ensure that all special educa-
tional settings are fully equipped with the necessary
hardware and software to support such initiatives.

17. User training and resources: Develop user-friendly
training materials and resources, e.g., manuals and tuto-
rials, for both educators and students. Provide ongoing
support to ensure effective utilization of the LLM-based
social robot in special education settings.

18. Professional development: Create and offer continu-
ous professional development opportunities to inspire
and motivate educators, so as to be kept updated on the
latest advancements and best practices.

19. Parents’ involvement and communication: Introduce
the LLM-based social robot to parents and promote
communication between them to gain their trust. Provide

insights into a child’s progress, learning achievements,
and areas for improvement to encourage collaboration
between home and school.

20. Dissemination of research results: Share relevant
studies and research findings regarding the effective-
ness of LLM-based social robots in education among
educators and parents to strengthen their trust on such
initiatives.

The proposed framework emphasizes the importance of
collaboration, customization, and ongoing support to cre-
ate a safe, positive, and inclusive learning environment for
students in special education, and suggests actionable steps
that could be followed by educators, developers and stake-
holders. Yet, those guidelines mean to be general allowing
them to be adaptable and applicable across various contexts
and situations, providing a broader structure that can be tai-
lored to specific needs, and accommodate different interpre-
tations and implementations.

7 Conclusions

As technology is evolving, its involvement in special edu-
cation aims to offer transformative solutions. On the one
hand, the exploitation of the impact of LLMs in the realm
of special education yielded promising perspectives. On the
other hand, the use of social robots in special education has
proven their effectiveness. Combining both technologies
by delivering LLM-based social robots to support special
education is expected to revolutionize the special education
sector. This approach may offer engaging, adaptable, and
empathetic human-robot interactions and promote therapeu-
tic, social, or emotional means of rehabilitation, a claim that
needs further scientific research.

This work aims to identify the status and the potential
of LLMs for social robots in special education, underlining
all related challenges, limitations, opportunities, and ethi-
cal considerations, aiming to provide insight and generate
guidelines for the use of LLM-based social robots towards
their efficient integration into special education practices.
The foreseen potential of LLM-based social robots has a
long way to go until they are practically implemented and
evaluated in educational settings. Our findings revealed that
there is a lack of practical in-field implementations of LLM-
based social robot in special education, while the develop-
ment of related applications is in its early stages. Therefore,
there is a need for constant research in the Al field, focusing
on delivering student-centric LLM models that can be inte-
grated into social robots to better meet the complex needs
of special education students. Related challenges have
been identified, including personalization issues, real-time
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responsiveness and emotional understanding, alinement and
hallucinations, along with limitations related to the physi-
cal and social interaction limits of robots, related costs and
accessibility of such supporting technologies that impose
constraints on the effectiveness of use of LLM-based social
robots in special education, as well as ethical consider-
ations, related to data privacy and inherent biases. The latter
challenges represent problems that could be addressed with
further research and innovation, while limitations and ethi-
cal considerations impose constraints on the effectiveness
and safety of LLM-based robots in special education. These
limitations and considerations require attention and strict
human oversight, so as to mitigate all related risks affecting
their safe and efficient application.

This work concludes by delivering a framework for the
integration of LLM-based social robots in special education,
as ethical considerations, best practices, effective Al-based
learning strategies, and more factors need to be considered
in their design process. The proposed framework aims to
address the unique needs and challenges of students with
diverse learning requirements, involving 20 subsequent
steps for three different roles, i.e., of educators, developers
and stakeholders, and deliver the first reported guidelines
for the integration of LLM-based social robots in special
education settings. The proposed framework is considered
a valuable contribution towards the smooth integration of
LLMs-based social robots in special education.

Future work includes in-depth pilot studies in special
educational settings to assess the practical application of an
LLM-based social robot by following the proposed frame-
work. Addressing reported challenges will also be on focus,
towards enhanced personalization aiming to the develop-
ment of a safe and effective educational tool intended for
special education.
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