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patterns and language rules. The latter enables them to 
understand and generate original content [1].

Recently, LLMs are playing a leading role in a wide range 
of natural language processing (NLP) applications involv-
ing language generation [2], automatic text summarization 
[3], text comprehension [4] and classification [5]. The most 
up-to-date LLMs, such as the Generative Pre-trained Trans-
former 4 (GPT-4) [6] and Large Language Model Meta AI 
(LLaMA) [7], have proven their capability to comprehend 
and generate efficiently human-resembling text. Thus, they 
are adopted as powerful tools for multiple applications, in 
public health and education. Therefore, the use of LLMs 
has been investigated for applications in the field of mental 
health as supportive tools [8] in the medical/clinical field: 
for diagnosis of mental distress [9], for cognitive impair-
ments such as Alzheimer’s disease [10], to predict the 
mini-mental state examination score related to cognitive 
impairments [11], for ASD detection [12] and more.

In the educational context, the use of LLMs deems ambi-
tious; early applications reveal the potential of LLMs in the 

1  Introduction

Large Language Models (LLMs) are artificial intelligence 
(AI) algorithms based on transformer models, a type of deep 
neural network. They incorporate billions of parameters and 
are pre-trained with vast language data to learn underlying 
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Abstract
Large language models (LLMs) have created remarkable possibilities for analyzing and generating language data and 
have been integrated into several fields aiming to transform them, including education. While most research efforts focus 
on LLMs in typical education or social robots, limited applications of LLMs have been reported in special education. 
Moreover, there is a profound lack of combined research in LLM-based social robots in special education. In this work, 
we argue that although LLMs and social robots have demonstrated their potential to advance special education separately, 
their combination is not yet fully exploited, and further research is required to enable such use. The first objective of this 
work is to review relevant literature to assess the feasibility of developing LLMs on social robot platforms for use in 
special education. The second objective of this work is to reveal related challenges, limitations, opportunities, and ethical 
considerations to provide insights, aiming to subsequently formulate guidelines for the efficient integration of LLM-based 
social robots into special education practices. To this end, the third objective of this work is to propose a thoughtful 
framework, aiming to formulate a safe and inclusive learning environment for students in special education, suggesting 
actionable steps that could be followed by educators, developers and stakeholders, towards address the unique needs and 
challenges of students with diverse learning requirements.
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educational teaching/learning process for knowledge trac-
ing [13], socio-emotional support of online conventional 
agents [14], production of learning resources [15], as well 
as for several different subjects such as programming [15], 
mathematics [16, 17], science [18], and medicine [19].

Social robots have also been used in education as teach-
ing assistants, tutors, or peers [20]. Their implementation 
has reported increased academic and cognitive outcomes, 
while their acceptance from teachers, students, and par-
ents is nowadays undoubtable [21]. The benefits of the use 
of social robots have been extended to special education, 
towards improving the cognitive, emotional, and social 
development of children with certain impairments, such 
as autism spectrum disorder (ASR), hearing impairments, 
down syndrome, neuro-developmental disorder, cerebral 
palsy, and more [22].

Based on the above, the empowerment of education 
using LLMs, combined with social robots, could bring out 
enhanced possibilities. On the one hand, LLMs have been 
integrated into robotics towards intelligent interactions and 
fulfilled autonomy for perception, control, decision-making, 
and path planning [23], mainly for industrial applications 
[23, 24]. On the other hand, integrating LLMs in social 
robots for education, specifically for special education, is 
still in its infancy.

To this end, the first main objective of this work is to 
identify the potential of LLMs for social robots in spe-
cial education. The scope is to bring together all related 
research in LLM-based social robots in special education 
and investigate all referenced implementations, highlight-
ing challenges and identifying opportunities for their effi-
cient integration into special education practices. It should 
be noted that, to the authors’ knowledge, there is no similar 
review article up to date focusing solely on LLMs for social 
robots in special education.

In 2021–2022, 7.3 million students between the ages 3 
and 21 received special education and related services under 
the Individuals with Disabilities Education Act (IDEA) in 
the United States, equal to a percentage of 15% of all pub-
lic-school students [25]. Based on the same source, the four 
most common disability types are specific language disabil-
ities (32%), speech or language impairments (19%), health 
impairments (15%), and autism (12%).

According to the United Nations Educational, Scientific 
and Cultural Organization (UNESCO), special education 
is a general framework of learning strategies that must be 
adjusted to respond to these educational needs [26]. Accord-
ing to the United Nations, based on Article 24 of the Con-
vention on the Rights of Persons with Disabilities (CRPD), 
there is a rightful claim for every person with mental or 
physical impairments to be educated. Individuals with spe-
cial needs should not be excluded from society, and any 

action should be undertaken so as for their mental and emo-
tional state to be sustained at an optimal level [27].

United Nations International Children’s Emergency 
Fund (UNICEF) in 2022 acknowledged the significance 
of Assistive Technologies (ATs) for children with neuro-
development disorders, and Social Robots are included 
among their recommendations [28]. ATs bolster students 
with special educational needs (SEN) to alleviate any dis-
abilities regarding their senses or mentality so that they can 
be socially active and receptive to acquiring various skills 
[29]. Furthermore, AI in special education is considered to 
be another assistive educational tool for integration, trigger-
ing positive impacts [30]. SEN students can achieve their 
learning goals, as they relish general freedom in the learning 
process, through flexible and adaptive personal tutoring. AI 
technologies encompass various application sectors, espe-
cially LLMs, and reinforce the learning process in special 
education [31].

Based on the above, the importance and ever-increasing 
need for special education initiatives and the impact of both 
LLMs and social robots in the learning process are evident. 
Therefore, the combination of LLMs and social robots has 
the potential to revolutionize special education.

Despite the potential of LLM-based social robots in spe-
cial education, there is no relevant research to include field 
trials, current applications, their potential impact, limita-
tions, challenges, and related ethical concerns. Moreover, 
while little is known about the impact of LLMs in educa-
tion, nothing is reported regarding the impact of LLM-based 
social robots in either typical or special education, regarding 
students’ motivation, engagement, learning outcomes, and 
more.

Reviews on LLMs for human-robot interaction [23], on 
robot-assisted special education [32], on social robots for 
special education [22], on LLMs for typical education [33], 
have been conducted in the literature. However, their com-
bination has not previously been investigated. A preliminary 
discussion of AI as a technology with the potential to sig-
nificantly change special education practices been published 
recently [34], yet it deals with AI software and future con-
siderations and does not report implementations of LLMs 
on social robots for special education. Therefore, this work 
constitutes the first approach to advance the knowledge and 
understanding of LLMs’ current role and potential for social 
robots in special education. Apart from the systematic report 
of all relevant research in the field, the second main objec-
tive of this work is to contribute to the corpus of knowledge 
by highlighting related challenges and opportunities and 
providing insights into how LLM-based social robots can 
be effectively integrated into special education practices and 
fundamentally promote them. Towards this direction, the 
third main objective of this work is to propose a framework 
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for the integration of LLM-based social robots in special 
education.

Based on the three main objectives of this works, three 
research questions (RQ) have been formulated to structure 
and guide the conducted research:

1.	 RQ1: “What is the current status of LLM-based social 
robots in special education?”.

2.	 RQ2: “What are the challenges, limitations and consid-
erations of applying LLM-based social robots in special 
education?”.

3.	 RQ3: “It is possible to formulate a framework for LLM-
based social robot integration in special education?”.

In conclusion, the contributions of this work can be sum-
marized as follows:

	● This work constitutes a systematic report dealing with 
the current role and potential of LLMs for social robots 
in special education, which has not previously been re-
ported in the literature.

	● This work underlines limitations, challenges, and ethical 
concerns regarding the integration of LLM-based robots 
in special education.

	● This work investigates for the first time the potential im-
pact of LLM-based social robots in special education, 
regarding students’ motivation, engagement, learning 
outcomes, and more.

	● This work, based on the gathered evidence, proposes 
the first general framework for the integration of LLM-
based social robots in special education, providing ac-
tionable steps that could be taken by educators, develop-
ers and stakeholders.

The rest of this work is structured as follows: Sect.  2 
includes a brief overview of LLMs and discusses the use 
of social robots in special education. The research method-
ology followed in this work is presented in Sect. 3, while 
Sect.  4 investigates LLM-based social robots in special 
education, including the investigation of LLMs for social 
robots and LLMs in special education separately. Section 5 
discusses research findings, limitations, challenges and ethi-
cal issues for the integration of LLM-based social robots in 
special education, while Sect. 6 introduces a framework for 
the integration of LLM-based social robots in special educa-
tion. Finally, Sect. 7 concludes the paper.

2  Background

Large Language Models (LLMs) and social robotics inde-
pendently demonstrated transformative potential across var-
ious domains, including education, healthcare, and social 
interactions. LLMs, with their ability to understand and 
generate human-like language, provide adaptive conver-
sational tools that cater to individual needs. Social robots, 
on the other hand, engage users through physical presence 
and interactivity, often serving as assistants, companions, 
or therapeutic agents. In special education, where students 
usually require tailored and responsive support, integrating 
these two technologies opens unique avenues for enhancing 
learning and social engagement.

Combining LLMs with social robots creates a power-
ful synergy where the conversational intelligence of LLMs 
complements the interactive embodiment of social robots. 
This combination is promising for special education, where 
diverse learning requirements require adaptive, emotion-
ally sensitive, and personalized interventions. This section 
reviews the foundational aspects of LLMs and social robots 
and sets the stage for understanding their joint application. 
We highlight how each technology contributes distinctively 
to supporting students with special needs. This background 
is crucial to appreciate the challenges, opportunities, and 
ethical considerations in deploying LLM-based social 
robots in special education contexts.

2.1  LLMs - overview

LLMs are machine learning models with large architectures, 
able to generate context full of coherence and accuracy, rep-
licating human speech by calculating the probability of a 
word following a certain input. LLMs can distinguish pat-
terns in words and predict each following word after being 
trained with large language datasets, namely corpus. Pre-
trained LLMs are fine-tuned to find practical use in tasks 
such as translation, summarization, domain-specific knowl-
edge generation, etc [35].

The foundations of LLMs can be tracked in the 40s, 
when McCulloch and Pitts [36] introduced the concept of 
artificial neural networks (ANNs), while in the 50s, the first 
rule-based language model was presented by IBM-George-
town University who developed a Russian-English transla-
tion system [37]. Another important development was the 
first chatbot, ELIZA, launched in the 60s [38]. Eliza was 
the earliest example of a language model; it was based on 
rules and pattern-matching techniques. Although a simple 
model, Eliza could identify keywords from the user input 
and match a pre-programmed answer. This was a signifi-
cant milestone in the development of language models, as 
it demonstrated the potential of natural language processing 
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	● LLaMa-2: Released in July 2023 by Meta AI and Mi-
crosoft, it is free to use. LLaMa 2– Chat is a model for 
dialogues [52].

	● Falcon: Released in September 2023 by the Technology 
Innovation Institute [53], it owns three variants depend-
ing on the number of its parameters.

Figure 1 depicts the milestones in the history of LLMs as 
considered by the authors.

2.2  Social robots in special education (SE & SR)

Social robots are robots that can interact with humans in 
a socially acceptable way [22]. Special education refers 
to the educational services provided to students with dis-
abilities. Special education, among others, differs from the 
typical one in the sense that it does not follow a common 
curriculum for all students of the same class. Special edu-
cation needs to be designed to meet the special needs of 
each different impairment and, furthermore, the personal 
needs of each individual student. Social robots can be 
highly captivating and can motivate students to try harder 
on tasks that otherwise would refuse to undertake due to 
their impairment [54]. Moreover, AI capabilities denoted to 
social robots allowed for efficient and adaptive human-robot 
interactions. Social robots offer adequate ‘safety’ to students 
to try practicing skills without the fear of judgment or criti-
cism, thus reducing their anxiety and focus on the goals of 
each educational task [55].

Social robots gave insight into social-based engagement 
in education and, in particular, met a high demand in the field 
of Special Educational Needs and Disabilities [56]. Every 
student possesses a palette of heterogeneous emotional and 
behavioral characteristics in the learning process within the 
classroom, especially the vulnerable ones struggling with 
physical and mental issues [57]. Adaptive learning strate-
gies to the uniqueness of each individual are paramount 
[22, 58]. Social robots have proven their effectiveness as 
therapeutic tools in special education towards promoting 
social, cognitive, and intellectual skills, assigned in dif-
ferent roles: teacher, assistant, or peer [20], as well as for 

and paved the way for more sophisticated models to come. 
In the 90s, the introduction of Long Short-Term Memory 
(LSTM) [39] revealed new opportunities for developing 
deeper neural networks able to capture statistical patterns 
of larger amounts of data, aiming to create statistics-based 
language models. In the 2010s, recurrent neural language 
models (RNNLM) were introduced, generating more natu-
ral texts than previous approaches [40].

At the same time, Stanford’s CoreNPL suite was launched 
[41], enabling sentiment analysis, along with GoogleBrain 
[42] which provided word embeddings towards clarifying 
text comprehension. All previously mentioned enhance-
ments contributed to developing Google’s Neural Machine 
Translation System [43]. However, the burst of LLMs was 
marked after the development of transformer models, intro-
duced in 2017 [44]. Based on transformer architectures, in 
2018, the Generative Pre-trained Transformer (GPT) model 
[45] and Bidirectional Encoder Representations from Trans-
formers (BERT) [46] were developed. The next version of 
GPT, GPT-2 [47], used unsupervised pre-trained models for 
supervised tasks towards multi-tasking learning while train-
ing without fine-tuning. OpenAI’s GPT-2 is regarded as the 
first LLM. At that time, other transformer-based LLMs were 
also developed, such as the Megatron-LM [48]. In 2020, 
GTP-3 was released [1], including more advanced features 
in answering questions, translation and searching, and being 
able to generate more natural language output with less fine-
tuning, forming the basis of ChatGPT [49, 50].The latest 
version, GTP-4 [6], offered even more opportunities to ana-
lyze nonverbal data and generate even more realistic textual 
output.

Indicatively, some of the most recent LLM models 
launched in 2023 are the following:

	● GPT-4: Released in March 2023 by OpenAI, it is the 
most updated version of the GPT series and is used 
mainly to generate human-like language [6].

	● PaLM 2: Released in May 2023 by Google, AI empow-
ers the chatbot of Google, Bard [51].

Fig. 1  Milestones in the history 
of LLMs
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2.	 RQ2: “What are the challenges, limitations and consid-
erations of applying LLM-based social robots in special 
education?”.

3.	 RQ3: “It is possible to formulate a framework for LLM-
based social robot integration in special education?”.

These three research questions are used as the backbone to 
structure this work. Therefore, each question guides a spe-
cific section of the manuscript, as seen in Table 1, ensuring 
cohesion with the main objectives, as well as a clear and 
narrative flow.

In this work, the PRISMA statement [63] was followed to 
conduct a clear, transparent and comprehensive systematic 
review. The PRISMA diagram of the conducted research 
methodology is illustrated in Fig. 2.

The original research was conducted in the Scopus data-
base. Scopus is considered as the most comprehensive and 
authentic database of scholarly publications since it indexes 
only curated content of high quality that is annually re-eval-
uated by an advisory board [64]. The same research terms 
were also used in Google Scholar database so as to enhance 
the number of retrieved articles.

At the first step of the research methodology, four tar-
geted queries (Q) were executed within the article title, 
abstract, and keywords, focusing to identify (Identification) 
the relevant literature on LLMs for social robots in special 
education:

1.	 Q1: “Special Education” AND “Social Robots” (SE & 
SR): returned 40 documents. Since our research needs 
to include LLMs, the latter query is secondary and it is 
needed to structure the background of social robots in 
special education, therefore only review articles from 
the results were considered, limiting the documents to 
two.

2.	 Q2: “Large Language Models” AND “Social Robots” 
(LLM &SR): returned 21 documents.

3.	 Q3: “Large Language Models” AND “Special Educa-
tion” (LLM &SE): returned zero documents. Yet, the 

several different impairments, ASD, mobility issues, cere-
bral palsy, attention deficit hyperactivity disorder (ADHD), 
hearing impairments, Down syndrome, oncological disor-
ders, neuro-developmental disorders (NDD) [22]. It should 
be noted that the use of social robots in special education 
is not the focus of this work; it is a subject that has been 
extensively researched in the literature, and as such, does 
not need to be systematically reviewed again in the context 
of this paper. Yet, it is useful to discuss how LLMs are able 
to contribute to them.

Considering that LLMs are capable of generating adap-
tive and interactive conversations, it is obvious that their 
integration could enhance the verbal interactivity of a social 
robot. Moreover, emphatic AI [59], which is set upon the 
mutual exchange of emotions in human-robot interaction, 
could endow social robots with adequate emotional con-
tent so that any input call can be used to adjust its reac-
tion by mimicking human feelings. An educator in the form 
of a social robot, with the aid of a Generative Pretrained 
Transformer is advocated [60]. To this end, GPT-3 has been 
proven to achieve “depth and complexity” [61] in learning 
procedures through speech, e.g., conversation, complex 
questions, and more. According to Bhat et al. [61], whether 
the user or the robot has either a passive or an active role, 
GPT-3 provides a multi-layered cognitive approach, as the 
model can readily adjust to the user’s demands. The gen-
eral perception of freedom of speech through a social robot 
forms prosperous dynamics in the scientific community.

3  Research methodology

The conducted research methodology was based on the 
three research questions (RQ) aligned with the main objec-
tives of this works according to the guidelines provided by 
Kitchenham [62] to conduct systematic literature reviews:

1.	 RQ1: “What is the current status of LLM-based social 
robots in special education?”.

Table 1  Structure of the paper based on the research questions (RQ), and overview of the final set of publications for each targeted query (Q) per 
database based on the defined taxonomy
RQ Q Taxonomy Number of publications Scopus Refs. Scholar Refs. Section; subsection
Background on social robots in special education Section 2;

2.21 SE & SR 2 [22, 54] -
LLMs in social robots Section 4;

4.12 LLM & SR 16 [65–74] [75–80]
LLMs in special education Section 4;

4.23 LLM& SE 5 [81–85] [86]
RQ1 LLMs for social robots in special education Section 4;

4.34 LLM & SR & SE 2 - [87, 88]
RQ2 Related challenges, limitations and considerations Section 5
RQ3 Framework for the integration of LLM-based social robots in special education Section 6
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4.	 Q4: “Large Language Models” AND “Social Robots” 
AND “Special Education” (LLM & SR & SE) returned 
zero documents.

The fourth query (Q4) comes as an inclusion of all the pre-
vious ones. However, even though LLMs have been incor-
porated into social robots and used in special education, 
conjoint research on LLM-based social robots in special 
education is scarce in the literature, indicating an uncharted 
research area. It should be noted that LLMs have caught 
research attention, especially GPT-based models, after 
2019. Potential application fields and limitations have not 
yet been fully depicted; therefore, any further integration in 
specialized domains is still in its infancy. During this first 
step of the research methodology, 178 documents in total 
were located.

During the second step of the methodology (Screening), 
the following eligibility criteria were applied:

broader term of “special education” seems to limit the 
results, while by using the term “Education” instead, 
research returned 818 documents. Therefore, special 
education approaches were located withing the bibliog-
raphy by using more refine searching rules by naming 
the most common types of special education categories, 
(e.g., learning disabilities, language disabilities such as 
dyslexia, and autism). Query of “Large Language Mod-
els” AND “autism” returned six documents, “dyslexia” 
returned one, “learning disabilities” returned one, “lan-
guage disabilities” returned zero, and “speech impair-
ment” returned one. In total, the latter approach returned 
9 documents. Note that only applications in special edu-
cation were included, therefore LLM-based diagnostic 
tools for impairments detection were not included, as 
consider related more to healthcare rather than special 
education.

Fig. 2  The PRISMA diagram of 
the applied research methodology
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in three distinct subsections (4.1, 4.2 and 4.3), as summa-
rized in Table 1.

4  Review of the literature

Early research on the integration of LLMs in education 
showed that it could meliorate both teaching and learning 
experiences [65]. The learning opportunities seem end-
less, according to Kasneci et al. [66]. The authors claim 
that LLMs could be integrated into education for all lev-
els of education, as well as for professional development. 
For learning tasks, LLMs could be used (1) in elementary 
schools to support students in practicing writing and reading 
by providing corrections, to encourage students on critical 
thinking, to summarize or interpret information for them for 
reading comprehension, to generate questions to organize 
their study, (2) in high schools, to additionally help on ana-
lytical thinking, and problem-solving, to generate exercises 
for practice for a variety of high-school curriculum sub-
jects, (3) in universities [66], to support research by pro-
viding valuable resources on highly specialized scientific 
topics, (4) from remote learners, to guide turn-taking during 
conferences, to engage participants, (5) from professional 
learners, to generate domain-specific knowledge, (6) from 
learners with special needs, to empower them with abilities 
they lack [67, 68].

For teaching tasks, LLMs could be used by teachers for 
(1) personalized teaching, to adapt lessons to each individual 
student’s need, (2) for creating teaching material that could 
be diverse, targeted, and of all levels of difficulties, (3) for 
reading and writing tasks, as to summarize texts and high-
lighting main points to better deliver the lesson to students, 
(4) for evaluation of students, to help them correct essays 
regarding grammar and spelling issues, to check reports for 
plagiarism [66, 69, 70].

Therefore, the use of LLMs in typical education mainly 
focuses on personalized learning to individual students’ 
needs, on educational content generation used from both 
students and teachers, as well as for assessment, i.e., grad-
ing, and instant feedback. In special education, the use of 
LLMs remains in the same context. Yet, a more specialized 
use is intended, focusing more on improving the accessibil-
ity for students with disabilities, e.g., with content genera-
tion in accessible formats, such as Braille, audio, or text, 
for students with specific impairments, dyslexia, non-verbal 
students, etc. Moreover, for students in need of personalized 
behavioral and emotional support, such as in autism, LLMs 
can provide adequate support to manage their learning envi-
ronment more effectively, by providing highly customized 
learning plans. In terms of technical and implementation 
aspects, LLMs in typical and special education differ in the 

(a)	 The document types must be either book chapters, jour-
nals, or conference papers (For Q1 only review articles).

(b)	 The literature must be at the final publication stage.
(c)	 The keywords are limited to the words specified for 

each query.
(d)	 The text must be written in English language.
(e)	 The papers must belong to the subject area of Computer 

Science or Engineering.

Eligibility criteria concluded in 83 documents. Finally, at 
the third step of the methodology (Included), information 
extraction from the abstracts and main text of the documents 
and classification of the literature retrieved from the previ-
ous steps took place to delete duplicates between the two 
databases, include only the publications related to the sub-
ject focusing on applied works, and classify them based on 
the search queries, concluding to 25 documents.

All defined works from the conducted research are refer-
enced within this article, either in the text or in pivot tables, 
and are equally used to draw conclusions.

To this end, a taxonomy is defined, to categorize the 
25 gathered documents systematically, so as to provide a 
clear framework enabling easier navigation to their content, 
facilitating their comprehensive analysis, towards making it 
easier to identify patterns, reveal trends, gaps and relation-
ships among them.

The proposed taxonomy aims to classify and organize the 
documents into four hierarchical categories based on their 
content, as imposed from the conducted research, i.e., the 
corresponding queries (Q):

1.	 SE & SR: Documents reporting the use of social robots 
in special education.

2.	 LLM & SR: Documents reporting the use of LLMs in 
social robots (SR).

3.	 LLM& SE: Documents reporting the use of LLMs in 
special education (SE).

4.	 LLM & SR & SE: Documents reporting the combina-
tion of LLMs and social robots in special education.

The 25 selected papers are listed in Table  1 and grouped 
based on the defined taxonomy. Note that the documents 
retrieved regarding the use of social robots in special educa-
tion (SE & SR) are used to define the backgrounds provided 
in Sect. 2.2.

The rest of the paper is structured based on the research 
questions. Therefore, each of the following sections aims 
to answer one research question: Sect. 4 for RQ1, Sect. 5 
for RQ2, and Sect. 6 for RQ3. For the structure of Sect. 4, 
where the aim is to review the current status of LLM-based 
social robots in special education, the defined taxonomy is 
used to organize the examination of the gathered documents 
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robot arm) and concluded that such an integration increased 
the trust in human-robot collaboration due to the more effi-
cient acquired communication skills of the robotic arm. 
The latter motivated Bottega et al. to adapt LLMs to their 
language learning games, integrating the GPT-4 model into 
the virtual robot of their VR application. Results indicated 
adaptability and quick feedback from the robot, which facil-
itated the interaction and engaged the users (no numerical 
performance evaluation results are reported).

Murali et al. [81] introduced a framework that used Chat-
GPT to develop a group-facilitation social robot. Dyads of 
participants interacted with the social robot to select the 
best candidate out of six fictional resumes for a manager’s 
position. The authors’ findings include a high percentage of 
speaker label identification (77% accuracy from transcribed 
tecta and 90% word level accuracy), indicating the potential 
of LLMs as a diarization tool for future systems.

Billing et al. [82] presented the first integration of Ope-
nAI GPT-3 with Pepper and Nao social robots. The authors 
facilitated an open verbal dialogue with the robots, sharing 
the potential of using LLM-based social robots in multiple 
dialogue systems. The technical implementation integrates 
three different services that constitute the complete dialogue 
system. No datasets or performance evaluation results are 
reported. Based on the latter original idea, Axelsson and 
Skantze [83] developed an application of an LLM-based 
social robot as a presenter, e.g., as a museum guide. The 
authors introduced an original approach for lexicalization, 
i.e., transforming semi-logical representations of chosen 
language statements from a knowledge graph into natural 
language. A feedback classifier was also adopted to collect 
data, i.e., users’ multimodal feedback, from the presenta-
tion. The feedback was classified as positive, negative, or 
neutral for updating the grounding status in the knowledge 
graph accordingly, thus affecting the procedure of the pre-
sentation. The evaluation of the system by 43 participants 
who interacted with it showed that LLM-based robot pre-
senters are considered more human-resembling and flexible 
compared to the same static implementation of the system, 
which does not consider the users’ feedback. The evaluation 
process was conducted by a multiple-choice questionnaire.

Adaptability to users’ feedback is critical for establishing 
an effective human-robot interaction. In [84], the authors use 
LLMs for real-time emotion generation in a human-robot 
dialogue. More specifically, they used GPT-3.5 for predict-
ing the emotion of a robot’s turn in real-time, exploiting the 
history of the ongoing dialogue, and the robot gestured the 
predicted emotion with facial expressions. For the system 
evaluation, the authors collected subjective questionnaire 
data. To evaluate the prediction capabilities of the model, 
a prediction confusion matrix was calculated for all emo-
tions using predicted and actual image labels, reporting best 

used datasets; in typical education the datasets are designed 
to cover a wide range of subjects and educational levels, 
while in special education the datasets content is more spe-
cialized, focusing on each different underlying impairment.

Overall, the potential of LLMs is anticipated at all stages 
of education for both teachers and students, as well as in 
industry to enhance the control process of soft robotics 
[71–73]. While many research articles discuss the potential 
of LLMs in education [74–77], there is no solid work to 
deal with their prospects in special education. Furthermore, 
while the use of social robots in special education has been 
at the forefront for many years, there is limited research on 
the use of LLM-based social robots in special education.

In what follows, the integration of LLMs in social robots, 
the use of LLMs in special education, and the combination 
of the latter two in LLM-based social robots for special edu-
cation are exhaustively investigated, following a structure 
for this section as imposed by the proposed taxonomy, aim-
ing to provide answers to RQ1.

This section aims to present the current status so as to con-
clude the stemming opportunities of such a combination and 
present all related challenges towards providing insight and 
guidelines for the use of LLM-based social robots towards 
their efficient integration into special education practices. It 
should be noted here that most of the referenced works in 
the following, do not report numerical evaluation results, as 
they mainly simulate proposed frameworks to underscore 
the transformative potential of LLMs for robots and in edu-
cational applications. The system evaluation is mostly con-
ducted by subjective questionnaires from the participants. 
Thus, in cases where technical aspects are reported, such as 
datasets and performance results, the latter are referred in 
the main text and not included in the commutative Tables 
due to their limited number. However, the used LLM model 
for all cases is referenced in the Tables.

4.1  LLMs for social robots (LLM & SR)

The evolution of socially interactive robots and their integra-
tion into human daily lives have been supported by simul-
taneous enhancements from other related scientific fields 
towards even increased human-robot interaction. Zhang et 
al. [78] conducted an extended review on the advancements 
of LLMs in human-robot interaction based on the recent 
progress in the field, aiming to provide directions for future 
research.

To this end, virtual reality (VR) has been coupled with 
LLMs and social robots [79] to deliver an immersive inter-
active English language teaching experience. The integra-
tion of LLMs in human-robot interaction has previously 
shown promising results; Ye et al. [80] proposed a Chat-
GPT-based assistant robotic arm (Franka Emika Panda 
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reported (included in Table 2). Khoo et al. [89] conducted a 
similar research study by using the social robot QTrobot and 
12 senior participants, aiming to provide personalized inter-
actions and thus improve the user experience. The system 
was evaluated with written surveys and observations, indi-
cation the need to improve users’ experience through person-
alized interaction (no numerical evaluations were reported). 
Wang et al. [90] proposed a framework to generate conver-
sation responses with expressive robot behavior, involving 
robot Haru, directly from an LLM. The system evaluation 
was done through a pilot study with 12 participants answer-
ing a short free-text experiential survey. Results indicated 
hallucinations and repetitions, as well as naturalness, enter-
tainment, helpfulness and empathy from the robot’s side. 
No numerical evaluation results were reported.

Jokinen et al. [91] employed LLMs to make Furhat robot 
chat about culinary delights. Example queries and responses 
of the robot were reported to demonstrate the linguistic ver-
satility and feasibility of the system, while no evaluation 
results were reported. In [92], robot Pepper was powered 
by a dialogue system based on GPT-3 to produce responses 
to 31 participants’ verbal inputs. The system was evaluated 
through questionnaires. Results revealed high expectations 
from the robot, strongly connected to human-human inter-
action. Borg et al. [93] employed Furhat as a virtual patient 
to create a platform for clinical reasoning in rheumatology. 
The platform was evaluated by 15 medical students, com-
pared to a semi-linear virtual patient platform, by evaluat-
ing the self-perceived accrual of clinical reasoning skills. 
Results revealed the preference of the students for the robot 
platform in terms of learning effect and authenticity. In [94], 
a dialogue system based on LLMs was embodied in a social 
robot. The system was an ongoing work, and no applica-
tion and evaluation results were yet reported. Kim et al. 
[95] used robot Pepper to investigate the distinctive design 
requirements for using LLMs in robots, that may be variable 
depending on the task and content. The user study included 
scenarios and 32 participants answering a questionnaire. 
Results indicated that LLM-based robots elevated expecta-
tions for sophisticated non-verbal cues.

Table  2 includes additional details about the selected 
literature (see Table 1) on LLM-based social robots, while 
Fig. 3 illustrates used social robots included in Table 2.

Although all studies referenced in this subsection focus 
on the integration of LLMs in social robots but not on the 
special education framework, all presented methodologies 
and results can be extended to provide broader implica-
tions for LLM-based social robots in special education. The 
integration of VR, human-robot interaction methodologies, 
used LLMs and selected social robots, presented in this sub-
section, reveal trends and guidelines that represent potential 

performance for “surprise” of 65% and lowest for “anger” 
with 41%. Overall, results showed the ability of the model 
to efficiently generate emotions in real-time, which is criti-
cal in LLM-based social robot applications where emotional 
interaction matters, as it is in companionship, therapy, spe-
cial education, or even in customer service.

Lozano et al. [85] examined the ability of a proposed 
LLM framework implemented on social robot EVA to 
assume nonverbal cues by the user. More specifically, the 
proposed framework included object recognition capabili-
ties and an LLM to propose meals to cook based on the 
detected ingredients. Nonverbal communication is crucial 
in cases where words are either absent or not enough to 
obtain valuable input from nonverbal cues such as gestures, 
posture, and eye gaze. The authors conducted two scenarios 
to illustrate the use of their proposed framework, while no 
performance results were reported.

In [86], user data from Twitter social media accounts 
are considered to engage users in generated personalized 
dialogues with an LLM-based social robot Mini. First, the 
robot uses a summarization LLM to present an overview of 
the news, and then a Long-Form Question-Answer model 
(LFQA) to generate related questions. The usability of the 
robot was evaluated by 17 participants who freely interacted 
with the robot. More specifically, the evaluation referred to 
the usability of the proposed conversation skill to interact 
with the robot by using a questionnaire of 5-point Likert 
scale. Results indicated both positive (expressiveness of the 
robot, diversity of topics, updated information) and negative 
aspects (delays and processing time). It should be noted that 
Mini is a social robot designed to assist the elderly with mild 
cognitive impairments. Therefore, the proposed system is 
designated to be applied to social robots perceived as com-
panions for the elderly. The same robot was employed in [87] 
to demonstrate the generation of diverse speech that could 
dynamically adapt to different user profiles. Paraphrasing 
was also used to prevent dialogues from turning repetitive 
and monotonous. The evaluation of the user-adapted seman-
tic description generation reported 4.87 s response time for 
the entire pipeline, while for the models used for paraphrase 
generation the inference time ranged between 0.88 and 
4.04 s, which is encouraging in both cases and shows their 
great potential when applied to social robots.

Irfan et al. [88] also used a Furhat robot and an LLM 
to derive multi-modal open-subject dialogues between the 
robot and senior users. The conducted workshop included 
the evaluation of 28 elderly participants. The evaluation of 
the system was conducted through a pre- and post- interac-
tion recorded audio interview with the participants, as well 
as from the video data analysis of the participants’ inter-
action with the robot. Results indicated smooth and varied 
in topics conversations, while many challenged were also 
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Ref. Social robot LLM Scope Application Limitations
[79] Jubileo 

open-source 
simulated 
humanoid 
robot

GPT-4 Human-robot real-
istic interaction

English teaching VR game Lacks sentiment analysis and 
dynamic corresponding facial 
expressions, not including auto-
matic pronunciation error detection

[81] Furhat robot ChatGPT Building a facilita-
tion social robot

Speakers diarization for multiparty con-
versations by interacting with a robot

Not enough domain-specific 
knowledge to entirely understand 
real-world interaction, incorrect 
turn-taking probably due to the 
rules of English grammar

[82] Pepper and 
NAO

GPT-3 LLMs-based 
human-robot inter-
action dialogue 
system

Conference participants-robot open dia-
logue on random topics to experience the 
possibilities and limitations of LLMs in 
live human-robot interaction systems

Based on cloud service Google 
Cloud speech-to-text and the 
NaoQi text-to-speech, more like a 
verbal approximation for text-based 
GTP-3

[83] Furhat robot GPT-3 LLM-based 
interactive robot 
presenter

Presentation of paintings in a museum to 
a set of participants

Retention tests revealed that objec-
tive learning outcomes from the 
interactive robot were limited

[84] Furhat robot GPT-3.5 Emotion gen-
eration in human-
robot dialogue

Evaluated with 47 participants through a 
card sorting game specially designed to 
elicit emotions to evaluate the influence 
of emotional expressions of the robot on 
users

Delay in the robot’s expression, 
server overload in cases, limited 
emotional categories, inability 
to generate long-term emotional 
responses

[85] EVA robot ChatGPT Nonverbal 
communication

The robot recognizes the presence of 
ingredients on a plate and the LLM ana-
lyzes them to provide potential recipes

< not referenced>

[86] Robot Mini BERT, RoBERTa, 
Davinci for sum-
marization, BERT, 
mT5, Davinci for 
question-answer

Personalized ver-
bal human-robot 
interaction

Interaction with participants to evaluate 
the ability of the system to maintain an 
engaging personalized conversation

Similar profiles of participants, 
unable to update the static personal 
data of users

[87] Robot Mini GTP-3, T5, mT5, 
PEGASUS, and 
BERT2BERT

Natural conversa-
tional human-robot 
experience

Paraphrase generation and user-adapted 
semantic description approaches to allow 
free interaction or generate appropriate 
conversation topics

Paraphrasing may result in loss of 
meaning, interaction delays, limited 
computational power to run some 
LLMs

[88] Furhat robot GPT-3.5 Personalized com-
panion robot

Interaction with 28 senior users to 
evaluate the human-robot interaction and 
identify primary obstacles

Hallucinations and obsolete infor-
mation, and disengagement cues, 
resulting in confusion, frustration, 
and worry, robot interrupting the 
user, slow, superficial and repetitive

[89] QTrobot GPT-3 Personalized com-
panion robot

Interaction with 12 senior users to 
evaluate the human-robot interaction and 
identify primary obstacles

Needs to improve flow of conversa-
tion, testing in real-world scenarios, 
integration of nonverbal cues

[90] Tabletop 
Robot Haru

Llama-2-70B-chat Dynamic and 
expressive 
conversations

12 human participants engaged in con-
versation for feedback and error analysis

Automatic speech recognition 
problems but LLM could recover, 
small class of LLM errors includ-
ing hallucinations and repetitions

[91] Furhat robot CodeLlama, 
Llama2

Chat in English 
about Japanese 
cooking using a 
Japanese knowl-
edge base

Case study with no participants Viabilty of the approach to develop 
cooperative and multilingual social 
robot applications

[92] Pepper GPT-3 Robot autono-
mous responses 
to human verbal 
input

31 participants and three questionnaires 
to evaluate the experience

Longer interactions or more inter-
actions were needed to decrease the 
variance

[93] Furhat robot GPT-3.5-turbo Creation of virtual 
patients

Tested on 15 medical students through a 
Wilcoxon signed rank test to compare the 
Robot vs. a traditional approach

Minor problem of hallucinations

Table 2  Integration of LLMs to social robots
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creating personalized education strategies to support stu-
dents with special educational needs.

Applications of LLMs in special education involving 
testing and evaluation of specific LLM-based interventions 
to a group of students are not yet reported in the literature. 
However, LLMs have been proposed to provide support 
to students with disabilities, yet not in a systematic way 
(Table 3). Indicatively, the authors in [96] focused on evalu-
ating LLM’s engaging ability in empathetic, adaptable, and 
contextually suitable interactions during therapeutic inter-
ventions with hypothetical ASD impairment. The LLM 

and scalable tools to be extended and integrated into modern 
special education environments.

4.2  LLMs in special education (LLM& SE)

While LLMs are considered powerful transformative tools 
in the field of education [31], the subfield of special edu-
cation has not yet fully embraced their capabilities. LLMs 
have the potential to offer assistance to educators by gen-
erating customized resources and planning lessons towards 

Fig. 3  Social robots empowered with LLMs according to the examined bibliography: (a) Furhat [102]; (b) EVA [103]; (c) Mini [104]; (d) QTrobot 
[105]; (e) Pepper [106]; (f) Nao [107]; (g) Jubileo [79]

 

Ref. Social robot LLM Scope Application Limitations
[94] ARI robot Alana v2 Multi-party 

conversations
Tested and improved through regular 
user tests where the robot acted as a 
receptionist in a hospital waiting room

No context-dependent gestures yet

[95] Pepper GPT-3.5 Human-robot 
interaction

A user study with 32 samples comparing 
an LLM-powered social robot against 
text- and voice-based agents through 
a mixed-factorial design with scenario 
tasks

LLM-powered robot was less 
preferred in one of the tasks, due 
to communication difficulties 
and the potential anxiety during 
collaboration

Table 2  (continued) 
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Overall, the proposed approach revealed its potential as a 
supplementary tool in ASD therapy with adolescents, leav-
ing room for further improvement. It should be noted here 
that the use of LLMs in special education should always 
be supplementary and used in the presence of experienced 
professionals who could adapt any technological tools to the 
specialized needs of each student’s disability.

Islam et al. [97] explored the efficiency of LLMs to per-
form image classification Among others, a dataset (Autistic 
Children Facial Image Data Set) including images of faces 
of children with and without autism was used, concluding 
in 83% of correct classification accuracy after fine-tuning. 
Packer et al. [98] implemented a review article focusing 
on LLMs for people with Attention Deficit Hyperactivity 
Disorder (ADHD), Autism Spectrum Disorder (ASD), and 
other learning difficulties, exploring the cognitive load that 

was developed using a set of specially developed prompts 
to guide it through appropriate interaction with ASD ado-
lescents. The performance evaluation of the LLM included 
empathy, skills to adapt and communicate, as well as 
engagement and abilities to launch a therapeutic-appropri-
ate interaction, assessed by clinical psychologists and psy-
chiatrists with varying levels of experience in ASD. Specific 
evaluation metrics were selected in line with the standards 
followed in psychological and autism therapy, forming an 
evaluation scorecard. The assessment was conducted by 
a panel of clinical phycologists and psychiatrist using the 
developed scorecard. The model could validate the emo-
tions of patients; however, it was not always consistent. It 
could properly communicate, adapt, and respond in all cases 
and was revealed to be engaging even though its responses 
were not as deep as expected from a therapeutic session. 

Ref. Impairment 
group

Scope Application LLM Limitations

[96] High-func-
tioning autistic 
adolescents

Simulated 
real-life 
therapeutic 
scenarios on 
hypothetical 
patients

Evaluation by experts of 
LLM’s empathy, adapt-
ability, communication, and 
engagement during therapy

Develop-
ment of 
prompts to 
appro-
priately 
guide an 
LLM

Not consistent in 
complex emo-
tional scenarios, 
not efficiently 
deep responses, 
varying levels of 
engagement

[97] Children with 
Autism

LLMs 
for image 
classification

Classification of 200 
images in autistic and non-
autistic class (among other 
applications)

LLaVA 
1.5 Large 
multi-
modal 
model

Lack of ability to 
process multiple 
images, produces 
hallucinations and 
misinformation

[98] Attention Defi-
cit Hyperactiv-
ity Disorder 
(ADHD)

AI writing 
workflow for 
reduced cogni-
tive loads

A model of executive-
cognitive capacity to assess 
how to manage the cognition 
of tasks and workloads, and 
support a design matrix for 
assistive tools and processes

GPT-3 No limitations were 
reported

[99] Adults with 
dyslexia

Assisted 
email writing 
prototype

Evaluated in 19 adults with 
dyslexia

LaMDA May not yet has 
sufficient accuracy 
to meet the needs of 
writers with dyslexia

[100] Children with 
Central Audi-
tory Process-
ing Disorder 
(CAPD), and 
Visual Process-
ing Disorder 
(VPD)

Assisting chil-
dren with dif-
ferent learning 
styles such as 
visual learners 
or auditory 
learners

Focused on enabling persons 
with disabilities by tapping 
into the latest advances in 
AI, not tested

Multi-
modal 
Gen-
erative 
AI using 
Visual 
language 
models 
ViLT and 
GIT

No limitations were 
reported

[101] People 
with motor 
and speech 
impairments

Social com-
munication 
through eye 
gazing

Preliminary use case to 
boost social chat with gaze 
inputs to generates multiple 
sentences of conversation 
in real time based on the 
relationship of people in 
conversation

GPT-4 The communication 
phase, i.e., update 
and improve the 
process of content 
preferences and 
social closeness, 
needs more testing 
for its stability

Table 3  Application of LLMs in 
special education
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It should be also noted the novel introduction of Large Lan-
guage and Vision Assistant models (LLVAs) that have also 
been incorporated in special education settings. Islam et al. 
[97] introduce LLVAs to detect children with autism from 
face images, underscoring the transformative potential of 
such models and their wide range of applications in real-
world scenarios. For this reason, the latter application has 
been included in Table  3, although considered more as a 
supporting diagnostic tool.

As research on LLMs is ongoing, their application in spe-
cial education is expected to evolve so that both students 
and teachers to benefit in practice.

4.3  LLM-based social robots in special education 
(LLM & SR & SE)

Based on all the above, it can be foreseen that the deploy-
ment of LLM-empowered social robots in special educa-
tion holds significant potential. LLMs are anticipated to 
provide social robots with adequate AI awareness, empa-
thy, and emotional adaptation to engage students and effi-
ciently guide personalized interactions in special education. 
The conducted literature review revealed only two reported 
implementations of LLM-based social robots in special edu-
cation, indicating that related research is still in its infancy 
(Table 4).

In their work, Lim et al. [110] enabled the social robot 
Pepper to understand American sign language towards 
enhancing nonverbal interaction for hearing impaired 
people. Even though the implementation of Lim et al. is 
not practically applied to special education settings, it is 
attributed to this field since it is the only related research 
to combine LLMs, social robots, and people with special 
needs. The authors developed a lightweight model for sign 
language recognition and produced context-aware gestures 
with Pepper using ChatGPT. The system was evaluated by 
empirical observations, aiming to highlight strengths and 
challenges. Results indicated the profound potential lying 
in human-robot interaction towards making technological 
tools, such as social robots, accessible for all. Mishra et al. 
[111] introduced an LLM pipeline with GPT-2 and BART 
towards generating text that the robot NAO could vocal-
ize. The SOCIALIQA dataset was used for the generation 

was associated with complex writing tasks, and how the 
latter affected users with certain impairments. Goodman et 
al. [99] proposed an LLM-based inference to assist adults 
with dyslexia in writing emails. The interface was evaluated 
by 32 participants, regarding the frequency and duration 
of writing new emails and replies through a questionnaire. 
Results indicated the usefulness and consistency of the 
system (no numerical evaluation results were reported). 
In [100], the authors suggested an assisting tool based on 
LLMs for people with visual or auditory difficulties, able to 
dynamically adapt to strengths and abilities of the individ-
ual user. The authors mapped the challenges and proposed 
a design approach for their system; therefore, no evalua-
tion performances were reported. Fang et al. [101] focused 
on people with motor and speech impairments to enhance 
their social communication skills with gaze inputs by using 
GPT-4. Separate user datasets were created, containing 
preferences and social closeness, and were used to generate 
tailored sentence suggestions for multi-turn conversation. A 
prototype test was conducted with three patients, reporting 
engagement and average conversation round around three 
topics more than 12, in 3 min.

Further utilization of LLMs in special education to 
empower students with special needs includes the following 
applications:

	● LLMs can be combined with speech-to-text/ text-to-
speech capabilities for people with visual impairments 
[108]. The latter possibility was recently launched in 
September 2023 by Meta and Ray-Ban, envisioning a 
supporting tool able to answer questions, summarize 
text, and read information to enhance the quality of life 
of the visually impaired. Future updates are expected 
to increase the efficient applicability of this integration 
further.

	● Students with hearing impairments could benefit from 
LLMs in education by generating real-time texts, as well 
as,

	● Students with learning disabilities could employ them to 
make the comprehension of complex texts easier [109].

	● LLMs could be used combined with embedded devices 
to generate speech for students with speech impairments.

Table 4  Integration of LLMs to social robots for applications in special education
Ref. Impairment 

group
Scope Application Social 

robot
LLM Limitations

[110] Hearing 
impairment

Nonverbal interaction Social interaction with sign language 
recognition

Pepper ChatGPT Limited three-dimen-
sional understanding 
in depth prediction

[111] Autism Teach perspective-
taking in a therapy 
session using gener-
ated text

To generate texts that the robot vocalizes to use 
in a clinical setting in the presence of experts. 
The robot’s role is of a stimulator, prompter, 
and reinforcer

NAO GPT-2, 
BART

The system needs 
to be more versatile 
in scenarios to be 
taught
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expression. Furhat owns a back-projected face that permits 
facial expressions to be displayed, including movements 
of eyes and brows and head gestures. These capabilities 
enable the robot to communicate emotions, both perceived 
and conveyed. Emotional awareness of robots can be highly 
engaging since users are experiencing a more realistic and 
immersive interaction. The latter is essential in special edu-
cation. Note that one of the reported limitations in Table 2 
is the integration of nonverbal cues that are expected to 
improve the flow of conversation. Alternative robots that 
hold an animated faceplate are also Moxie, QTrobot, and 
EVA. The last two are also reported in Table 2, justifying the 
use of social robots that can display emotions as preferable 
when combined with LLMs.

Moxie [112] has been used for Mental, Behavioral, and 
Developmental Disorders as a rehabilitation tool for chil-
dren. It is a socially interactive robot and a powerful thera-
peutic tool, as children are engaged in games and activities 
and interact with stories of Moxie. The overall interaction 
through emotion, speech, and expression can be a great asset 
in therapy intervention with children. It is worth noting that 
Moxie is connected to ChatGPT and further uses the cues 
of the interaction with the aid of GPT to be adjusted to the 
user’s needs. Moxie, along with QTrobot, were also recom-
mended as appropriate brain/mind-controlled robotics [113] 
for students with brain damage or neurological disorders 
who face difficulties in verbal communication. QTrobot 
recently integrated the latest LLM technologies, employing 
ChatGPT for language understanding and generation [105].

GPT models are considered to be the most notable and 
well-known LLM models, yet Bard, LLaMa 2-Chat, and 
other models are viable alternatives in the field of special 
education for social robots. Moreover, research should take 
into account other options for social robots, which already 
have been cooperating with ChatGPT, like LOONA [114], 
Cozmo [115], and Emo Robot [116]. LOONA has the poten-
tial for graphic programming and its main module, GPT 
Wonderland, encompasses a lot of activities for children. 
Ameca is thought to be the most advanced humanoid robot 
at the moment [117], while OpenAI and 1X have partnered 
to produce a robot that will incorporate GPT-5 [118].

While one aspect of the LLMs integration into robots is 
the appropriate robot’s design, another is the robot’s voice. 
Mini robot is designed to interact in Spanish, therefore 
LLMs integration in Mini needs to also include a module 
to translate prompts from/to Spanish. Multilingual models 
need to be adopted in such cases, to also include alternative 
languages at their corpus. However, as reported in the exam-
ined literature, the translation of one language to another and 
back, may result in paraphrasing and distort the meanings.

One additional constraint for LLMs to be integrated into 
social robots is related to the computational power required 

tasks. Context generation by using GPT-2 reported accuracy 
of 51%, indicating that the model generated data similar to 
the test set. BERTscore was used to evaluate question and 
option generation tasks, reporting high precision (up to 
90%), recall (up to 91%) and F1-score (up to 90%). Statisti-
cal analysis of self-reports from domain experts was also 
considered. The robot was proposed to be used in a clinical 
setting in the presence of experts for autism interventions. 
The robot had multiple roles, e.g., of a stimulator, prompter, 
and reinforcer, out of which the stimulator role had auton-
omy in the text generation the robot used.

It should be noted, though, that this integration experi-
ences limitations and challenges and brings forward ethi-
cal concerns regarding their development and application in 
special education settings, discussed in the following.

5  Discussion: challenges, limitations, and 
ethical considerations

In what follows, the challenges, limitations and consider-
ations of applying LLM-based social robots in special edu-
cation are identified, following a structure for this section 
as imposed by the proposed taxonomy (Table 1), aiming to 
provide answers to RQ2.

5.1  Challenges

Challenges refer to problems or difficulties arising during 
the process of integrating LLMs in social robots for spe-
cial educational purposes, that need to be overcome. The 
latter may be robot-, LLMs-, or special education- related 
challenges.

5.1.1  Robot-related challenges

While NΑΟ robot is one of the most commonly used social 
robots in special education, especially in applications with 
ASD students, early work on the integration of LLMs in 
social robots indicated preferable alternatives to NAO. Most 
research works included in Table 2 (37.5%) use the Furhat 
robot.

A powerful LLM alone is not adequate to develop an 
efficient human-robot interaction environment. Successful 
interaction with social robots also implies speech, voice, 
emotions, and body language. In human-robot interaction 
in special education, eye gaze is considered as a measure of 
engagement and joint attention. Moreover, since LLMs are 
engaging students in realistic conversations, social robots 
need to have a natural and adaptable appearance to match 
the conversation. However, NAO robot, along with several 
other popular social robots, conveys an emotionless facial 
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and more. A central control system gathers the outputs of all 
modules and uses them as inputs to drive the LLMs context, 
and subsequently the robot actions. Finaly, feedback loops 
are used to adjust the robots’ language and gestures, so as to 
match the LLMs response. The latter process is challenging 
due to (1) the complexity of integration resulting from the 
different technical demands of each model, (2) the real time 
processing requirement so as to handle computational loads 
and provide fluidity in the human-robot interaction, (3) the 
difficulties involved in contextual understanding, (4) and 
the inherent hardware limitations in movements and facial 
expressions of robots, not always aligning with the software 
output.

5.1.2  LLMs-related challenges

In some cases, LLMs can be harmfully biased or overfit-
ted, leading to hallucinations, repetitions and superficial 
conversations, as seen in the reported limitations in Table 2. 
Additionally, LLMs may generate content that, although not 
clearly censored, could be considered unsuitable for special 
education applications. The latter results in frustration and 
confusion, provoking negative emotions in the users. Since 
the emotional stability of children is a key component to 
promoting special education initiatives, the LLMs need to 
be as reliable as possible. For this reason, it should be inves-
tigated whether the use of emotion recognition software 
[119] in combination with appropriate prompt engineering, 
can ensure proper LLM alignment, i.e., ensuring that the 
LLM can act safely and as expected.

In general, the understanding and interpretation of LLMs’ 
outputs could be challenging. Transparent decision-making 
is crucial in social robotics, especially when dealing with 
sensitive or critical tasks such as those related to special 
education. The users’ acceptance and trust, referring to both 
students and special educators, are clearly affected by the 
performance of LLMs on the robots. Unexpected responses 
from LLMs can impact user acceptance, emphasizing the 
need for careful design and user experience considerations.

At this point, it is worth noting that the literature lacks 
real-world scenarios’ applications. Evaluation of LLM-
based social robots in special education has not been 
reported yet. Therefore, the fidelity of interventions with 
LLM-based social robots is not measured, restricting the 
ability to study the practical outcomes of their use.

5.1.3  Special education-related challenges

LLMs designated for special education need to be trained 
with specific data. LLMs are developed to understand and 
generate human language in the typical way. However, com-
munication with students with special educational needs is 

for LLMs to run in real-time, either locally or in the cloud. 
Most social robots have limited resources, while several 
other modules are simultaneously running on the robots 
along with LLMs, e.g., for vision tasks and motor control, 
leading to either processing delays or server overload in 
some cases. The latter is the reason for the reported limita-
tions in efficient human-robot interaction, causing delays in 
the robot’s dynamic facial and verbal expressions, translated 
as difficulties from LLMs to provide adequate empathy and 
adaptability. The achievement of real-time interaction can 
be quite challenging when using LLMs; natural language 
processing in real-time while retaining responsive actions 
requires both efficient algorithms and hardware. Finally, 
LLMs are mainly trained on text data and may not inher-
ently comprehend the physical context in which social 
robots operate. Integrating sensory input and contextual 
awareness remains a challenge.

Robot selection in all cases depends on the applica-
tion and the target group. Not all robots display the same 
capabilities, while others are specially designed to sup-
port certain age groups (as Mini for the elderly), or certain 
impairments (as PARO for dementia, or NAO and Milo for 
autism). Nowadays, several types of social robots are avail-
able in the market, each with different features and capabili-
ties to interact with humans. The selection of the appropriate 
robot must rely on its suitability for each target group, as 
well as its LLM integration capabilities in terms of techni-
cal characteristics. Therefore, the LLM-based social robot 
selection must be performed by considering technical and 
pedagogical criteria, specific to each educational scenario 
and student target group. Selecting the appropriate type of 
social robot can be handled as a multi-criteria decision-
making (MCDM) problem, considering technical factors 
(e.g., autonomy), capacity (e.g., memory), economic factors 
(e.g., costs), interaction capabilities (e.g., reported improve-
ment), social factors (e.g., acceptance), and more, that need 
be equally weighted under the prism of user impairment 
characteristics (e.g., autism characteristics) towards indicat-
ing the most appropriate robot for each use case.

An additional robot-related challenge concerns the inte-
gration of multiple models on the robot, and their synchro-
nization. While LLMs are used for communication, other 
models are simultaneously run on the robot for behav-
ioral and emotional analysis. Their synchronization can be 
achieved through modular architectures of the robots’ soft-
ware. Modular architectures allow each module to operate 
separately its specific function, while it communicates with 
other modules through well-defined interfaces. Real-time 
processing is required to analyze facial expressions, vocal 
tones, posture, etc., and determine the overall status of the 
user. The robot, thus, collects and analyzes data from its sen-
sors continuously and outputs users’ emotions, behaviors, 
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in special education educational interventions, especially 
for children with social and emotional impairments.

5.2.2  LLM-related limitations

Advanced LLMs can easily stimulate a conversation, yet 
there is an inherent difficulty in the true understanding of 
the needs of students with special needs. The latter poses 
limitations in the interactions, due to the lack of a deep com-
prehension of a student’s emotions and needs.

Moreover, each students’ needs differ significantly even 
among the same impairments; there are several scales to 
evaluate autism, since each case has a different severity and 
requires different therapeutic approaches. Thus, LLMs may 
appear empathetic, yet they fall short in fully supporting dif-
ferent students with complex variable emotional and social 
needs.

LLMs require large datasets to train upon each special 
impairment case in special education so as to function effec-
tively. Data privacy and related ethics, though, pose limita-
tions in acquiring such sensitive personal data, limiting the 
capabilities of personalized feedback of the robot. Even in 
case of accessing inclusive data, the fairness of an LLM-
based robot could be limited from biased training data.

5.2.3  Special education-related limitations

LLMs are not endorsed to make therapeutic or educational 
decisions, therefore they cannot fully replace a human ther-
apist or teacher in special educational settings.

Another limitation is related to accessibility and costs 
of acquiring and maintaining an LLM-based social robot. 
Special education institutions may struggle to have access 
to such technologies, especially in underfunded or rural 
regions, e.g., rugged areas, remote mountainous villages or 
islands.

The identified limitations are summarized along with 
their implications in Table 5.

5.3  Ethical considerations

As already mentioned, LLMs can generate content that 
might be biased or inappropriate. In special education, the 
latter could lead to unfair treatment or misinterpretation of 
the needs and emotions of students with disabilities. All 
LLMs-generated tasks need to obey basic ethical and edu-
cational standards, ensuring that the models are trained on 
unbiased data and that they would not generate discrimina-
tive or unfair results for persons with special needs. Biased 
AI models can influence critical decision-making. How-
ever, it is challenging to fully comprehend how AI models 
make those decisions, especially in complex LLM models. 

far from typical. Each impairment group has different ways 
to express and communicate and has different needs, e.g., 
ASD children cannot engage and lack verbal and nonver-
bal communication skills, children with dyslexia have dif-
ficulty expressing themselves through speech but do not 
have learning difficulties or lack of communicational skills, 
children with hearing impairments cannot process linguistic 
information but can process nonverbal cues, etc. It is, there-
fore, evident that since each impairment group has different 
needs, distinct LLMs need to be developed specifically for 
each group and integrated with various social robots tailored 
to those groups [120]. The latter requires domain-specific 
knowledge that needs to be integrated into the models in 
terms of verbal/nonverbal cues and appropriate educational 
scenarios for each impairment. Fine-tuning of LLMs for 
specific social groups requires labeled datasets and exper-
tise. Acquisition and annotation of diverse datasets for mul-
tiple social scenarios is expected to be challenging.

Moreover, there is a need to maintain an equilibrium 
between standard responses and personalized educational 
interventions. The LLM-based robot needs to maintain both 
general coherent and personalized dialogues to resemble a 
human therapist. The challenge in special education is not 
only to deliver an LLM-based robot that simply understands 
and gives feedback but also to tailor it to specific individual 
needs.

5.2  Limitations

Limitations refer to constraints or boundaries restricting 
the process of integrating LLMs in social robots for spe-
cial educational purposes, i.e., the restrictions within which 
this integration must operate. Limitations can also be robot-, 
LLM-, and special education- related. Limitations are 
closely related to the aforementioned challenges, and they 
only differ in the sense that challenges can be overcome 
whereas limitations set boundaries that cannot be overcome. 
Thus, limitations are considered challenges that cannot be 
overcome.

By thoroughly examining the challenges of the integra-
tion of LLMs in social robots for special education purposes, 
inherent limitations have been identified. In what follows, 
these main limitations are briefly mentioned.

5.2.1  Robot-related limitations

Robot-related limitations are related to the physical and 
social interaction limits provided by machines such as 
robots. Even by using the most advanced LLM, social 
robots could not fully replicate the wide range of human 
social interactions and emotions, communicated through 
facial expressions and complex gestures, that are essential 
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social robots are assistive tools and should always be used 
under their supervision and responsibility.

The use of such technological tools involves the acqui-
sition and processing of students’ sensitive personal data, 
raising questions about their management. As LLMs con-
stantly evolve, the development of ethical guidelines 
regarding data privacy and security policies is necessary 
for protecting data from authorized access and providing 
students and their parents the necessary transparency on 
the way data is handled before consenting to participate in 
any intervention. Informed consent from students and their 
guardians is necessary, as to be fully aware of how data is 
used, stored and protected. Data security measures through 
encryption techniques, secure data storage and regular secu-
rity inspections, could safeguard sensitive information from 
unauthorized access. Since the models designated for spe-
cial education need to be trained on private data for person-
alized treatments, additional ethical concerns arise in case 
the developed models are later available publicly. Data pro-
tection regulations such as General Data Protection Regu-
lation (GDPR) [123] and Consumer Online Privacy Rights 
Act (COPRA) [124], need to be obeyed, towards ensuring 
the ethical use of LLMs in education through the provision 
of guidelines for handling and protecting sensitive student 
data.

The phycological impact on students due to these ethical 
implications is significant [125]. Lack of trust and safety 
can lead to anxiety and refusal to participate in LLM-based 
robotic interventions. Perceived bias can affect self-esteem 
and create feelings of frustration and marginalization. Deci-
sion making from a non-explainable AI system could make 
students feel powerless and out of control over the pro-
cesses. Moreover, the generated stress over these new tech-
nologies can overall affect their mental health [126, 127].

Considering ethical and safety restrictions, as mentioned 
above, a safe and stable environment should be created so 
that children with special needs can be effectively treated. 
Additionally, research has uncovered the scientific com-
munity’s limited interest in children’s mental safety when 
interacting with AI technologies [128]. This natural imita-
tion of a human-like voice can create emotional bonds with 
children. Nevertheless, issues of toxic dependencies should 
be addressed. The prime objective is the social integration 
of children with special educational needs in society, not 
any form of bonding, which could result in self-isolation.

Explainable and responsible development of AI needs to 
follow specific guidelines and regulatory standards, such as 
the IEEE Ethically Aligned Design [121] or the AI Ethics 
Guidelines from the European Commission [122]. Human 
inspection of the LLMs outputs is required to identify any 
possible biases and interfere accordingly. Therefore, the role 
of special educators is preserved at all times; LLM-based 

Table 5  Limitations of integrating LLMs in social robots for special 
educational purposes
Category Description of limitation Implications
Robot-
Related 
Limitations

Physical Interaction 
Limits: Social robots cannot 
fully replicate the complex-
ity of human expressions 
and gestures, which are 
crucial in special education.

Limits the effective-
ness of emotional 
engagement and inter-
action, particularly for 
students with social 
impairments.

Hardware Constraints: 
Limited processing power 
in social robots restricts the 
real-time processing capa-
bilities required for dynamic 
LLM interactions.

Delays in responses 
can lead to less 
natural interactions, 
reducing the robots’ 
effectiveness as empa-
thetic companions.

LLM-
Related 
Limitations

Lack of True Emotional 
Understanding: LLMs 
lack genuine emotional 
comprehension, resulting 
in responses that may not 
fully resonate with students’ 
needs.

Can impact the 
quality of interac-
tions, particularly for 
students requiring 
sensitive, personal-
ized engagement.

Data Privacy and Ethical 
Concerns: Access to large, 
diverse datasets for training 
LLMs in special education 
settings is restricted by 
privacy concerns.

Limits personalization 
and adaptability of 
responses; raises con-
cerns about sensitive 
data protection.

Inconsistent and Biased 
Outputs: LLMs may pro-
duce biased or inappropriate 
content due to training data 
limitations, especially in 
sensitive contexts.

May lead to confusion 
or frustration among 
students; requires 
educator oversight to 
prevent potentially 
harmful interactions.

Special 
Education-
Related 
Limitations

Limited Accessibility in 
Underfunded Regions: 
High costs and maintenance 
requirements limit access to 
LLM-based social robots in 
certain areas.

Reduces the potential 
for equitable access 
to this technology 
in special education, 
especially in rural or 
remote locations.

Inadequate Fit for Diverse 
Needs: Students with special 
needs vary greatly in their 
requirements, which makes 
it difficult for LLMs to cater 
to all needs effectively.

LLMs cannot fully 
replace human educa-
tors or therapists, 
particularly in 
complex cases 
requiring nuanced 
understanding.

General 
Limitations

Complex System Integra-
tion: Real-time synchro-
nization of LLMs with 
emotional and behavioral 
analysis models is techni-
cally challenging.

Reduces system reli-
ability and response 
fluidity, impacting 
the robot’s ability 
to deliver seamless, 
adaptive interactions.
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6.1  Educators

1.	 Needs assessment and goal setting: First, a thorough 
assessment needs to be conducted involving special 
education experts to identify specific learning goals, 
challenges, and objectives for students with different 
abilities and needs. Such an assessment includes a set of 
specialists, such as special education teachers, psychol-
ogists, speech therapists, etc., provide their valuable 
insights regarding the special needs of each individual 
student.

2.	 Customization and personalization: Design the LLM 
integration to allow for customization and personal-
ization. Tailor the learning experience based on indi-
vidualized special education plans, learning styles, and 
progress tracking for each student. Therefore, different 
goals would be set for each student, tailored to their 
abilities and challenges.

3.	 Align with curriculum standards: Ensure that the 
LLM aligns with special education curriculum stan-
dards, facilitating seamless integration into existing 
special education programs and lesson plans.

4.	 Environmental considerations: Educators need to 
access the setup of the classroom to make sure that it 
is appropriate to accommodate sensory needs of both 
students and robots and minimizes their distractions.

6.2  Developers

5.	 Social robot selection: Based on the different abilities 
and needs of each student, as well as the different learn-
ing goals, the appropriate social robot is selected, so as 
to possess the requirements for delivering the designed 
special education plan.

6.	 Accessible user interface: Develop an accessible 
and user-friendly interface that accommodates vari-
ous assistive technologies, ensuring that students with 
diverse abilities can interact effectively with the LLM-
based social robot and the special teachers can easily 
operate.

7.	 Multimodal interaction: Implement multimodal inter-
action capabilities, incorporating visual, auditory, and 
tactile elements to support students with different sen-
sory preferences and needs for both verbal and nonver-
bal interaction.

8.	 Adaptive learning approaches: Integrate adaptive 
learning technologies that can adjust the content, pace, 
and difficulty levels based on the progress of individual 
students.

6  A framework for LLM-based social robots’ 
integration in special education

Addressing the aforementioned challenges involves inter-
disciplinary efforts involving expertise in robotics, natural 
language processing, special education, and ethics, aiming 
to contribute towards the successful integration of LLMs for 
social robots in special education.

To this end, a framework of LLM-based social robots 
in special education needs to be formulated to ensure that 
their conscious use would only be beneficial. Implementing 
LLMs via social robots in the field of special education is 
a demand which is still under-researched. The mainstream 
design approach is through Cloud (GPT-J) since cloud ser-
vices can ensure the privacy of data [129]. Whether children 
have SEN or not, when they are exposed to AI, they have to 
be protected due to the vulnerability of their age. For this 
reason, recently, children’s fundamental rights in human-
robot Interaction have been developed based on UNICEF’s 
AI Policy Guidance [128].

Every impairment in children with special educational 
needs may vary, causing diverse symptoms; moreover, 
multiple disorders may coexist in the same person. There-
fore, guidelines should be formed and adopted by LLMs, 
addressing limitations, learning strategies, emotional and 
psychological approaches, and more. LLMs are the novel 
key element of communication within a social robot. The 
robot should take various actions, like initiating a conver-
sation, maintaining it, evaluating, explaining, and more, 
within the learning process. This learning cycle of steps 
must be properly adapted, planned, and executed. Before 
applying LLMs in the field of special education, it is of high 
importance to enumerate all their potential functions, which 
are particularly useful for children with special needs. Such 
students may often have limited or zero verbal communica-
tion or may undergo outbursts of negative emotions, e.g., 
anger or disappointment. The benefits of the integration of 
LLMs in social robots are clearly evident, yet the type of 
intervention a system should adopt in times of an ongoing 
crisis is still a matter of debate.

Based on all the above, it is evident that integrating an 
LLM-based social robot into special education requires a 
thoughtful framework to address the unique needs and chal-
lenges of students with diverse learning requirements. In 
what follows, aiming to provide answers to RQ3, a frame-
work is proposed, involving 20 subsequent steps for three 
different roles:
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insights into a child’s progress, learning achievements, 
and areas for improvement to encourage collaboration 
between home and school.

20.	 Dissemination of research results: Share relevant 
studies and research findings regarding the effective-
ness of LLM-based social robots in education among 
educators and parents to strengthen their trust on such 
initiatives.

The proposed framework emphasizes the importance of 
collaboration, customization, and ongoing support to cre-
ate a safe, positive, and inclusive learning environment for 
students in special education, and suggests actionable steps 
that could be followed by educators, developers and stake-
holders. Yet, those guidelines mean to be general allowing 
them to be adaptable and applicable across various contexts 
and situations, providing a broader structure that can be tai-
lored to specific needs, and accommodate different interpre-
tations and implementations.

7  Conclusions

As technology is evolving, its involvement in special edu-
cation aims to offer transformative solutions. On the one 
hand, the exploitation of the impact of LLMs in the realm 
of special education yielded promising perspectives. On the 
other hand, the use of social robots in special education has 
proven their effectiveness. Combining both technologies 
by delivering LLM-based social robots to support special 
education is expected to revolutionize the special education 
sector. This approach may offer engaging, adaptable, and 
empathetic human-robot interactions and promote therapeu-
tic, social, or emotional means of rehabilitation, a claim that 
needs further scientific research.

This work aims to identify the status and the potential 
of LLMs for social robots in special education, underlining 
all related challenges, limitations, opportunities, and ethi-
cal considerations, aiming to provide insight and generate 
guidelines for the use of LLM-based social robots towards 
their efficient integration into special education practices. 
The foreseen potential of LLM-based social robots has a 
long way to go until they are practically implemented and 
evaluated in educational settings. Our findings revealed that 
there is a lack of practical in-field implementations of LLM-
based social robot in special education, while the develop-
ment of related applications is in its early stages. Therefore, 
there is a need for constant research in the AI field, focusing 
on delivering student-centric LLM models that can be inte-
grated into social robots to better meet the complex needs 
of special education students. Related challenges have 
been identified, including personalization issues, real-time 

9.	 Speech and gesture recognition and feedback: Incor-
porate robust speech and gesture recognition capabilities 
to facilitate communication for students with language 
and hearing or other impairments. Provide constructive 
and immediate feedback to support learning.

10.	 Emotional intelligence: Embed emotional intelligence 
features into the LLM to recognize and respond appro-
priately to the emotional states of students, fostering a 
supportive and empathetic learning environment.

11.	 Data privacy and security: Implement robust data pri-
vacy and security measures to protect students’ sensi-
tive information. Comply with relevant regulations and 
guidelines to ensure the ethical use of special student 
data.

12.	 Regular assessment and progress monitoring: Inte-
grate assessment tools within the LLM and by using 
embedded sensors on the social robot to monitor stu-
dents’ progress. Provide real-time feedback to educators 
to support ongoing improvement.

13.	 Assistive technology integration: Ensure compatibility 
of the system and ability to integrate with other assistive 
technologies, such as VR, to address the diverse needs 
of students with disabilities.

14.	 Continuous improvement and updates: Establish 
a framework for continuous improvement, regularly 
updating both the LLMs’ and the robots’ capabilities 
based on feedback, emerging research, and advance-
ments in technology.

6.3  Stakeholders

15.	 Expertise collaboration and support: Provide 
resources and training for educators to integrate the 
LLM-based social robot into their teaching practices 
effectively. Encourage collaboration between teachers, 
special education professionals, and technology experts.

16.	 Access to technology. Ensure that all special educa-
tional settings are fully equipped with the necessary 
hardware and software to support such initiatives.

17.	 User training and resources: Develop user-friendly 
training materials and resources, e.g., manuals and tuto-
rials, for both educators and students. Provide ongoing 
support to ensure effective utilization of the LLM-based 
social robot in special education settings.

18.	 Professional development: Create and offer continu-
ous professional development opportunities to inspire 
and motivate educators, so as to be kept updated on the 
latest advancements and best practices.

19.	 Parents’ involvement and communication: Introduce 
the LLM-based social robot to parents and promote 
communication between them to gain their trust. Provide 
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responsiveness and emotional understanding, alinement and 
hallucinations, along with limitations related to the physi-
cal and social interaction limits of robots, related costs and 
accessibility of such supporting technologies that impose 
constraints on the effectiveness of use of LLM-based social 
robots in special education, as well as ethical consider-
ations, related to data privacy and inherent biases. The latter 
challenges represent problems that could be addressed with 
further research and innovation, while limitations and ethi-
cal considerations impose constraints on the effectiveness 
and safety of LLM-based robots in special education. These 
limitations and considerations require attention and strict 
human oversight, so as to mitigate all related risks affecting 
their safe and efficient application.

This work concludes by delivering a framework for the 
integration of LLM-based social robots in special education, 
as ethical considerations, best practices, effective AI-based 
learning strategies, and more factors need to be considered 
in their design process. The proposed framework aims to 
address the unique needs and challenges of students with 
diverse learning requirements, involving 20 subsequent 
steps for three different roles, i.e., of educators, developers 
and stakeholders, and deliver the first reported guidelines 
for the integration of LLM-based social robots in special 
education settings. The proposed framework is considered 
a valuable contribution towards the smooth integration of 
LLMs-based social robots in special education.

Future work includes in-depth pilot studies in special 
educational settings to assess the practical application of an 
LLM-based social robot by following the proposed frame-
work. Addressing reported challenges will also be on focus, 
towards enhanced personalization aiming to the develop-
ment of a safe and effective educational tool intended for 
special education.
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