

Integrating the **Neurodivergent Scale for Interacting with Robots (NSIR)** with the **Volitional Submissiveness Scale (VSS)** allows researchers to explore the dynamics of power, agency, and "consensual compliance" in human-robot relationships.

The VSS typically measures a person's inclination to willingly yield to another's will or authority, often driven by trust, respect, or a desire for harmony. Applying the NSIR to this construct reveals how neurodivergent users might engage in a form of "robotic submissiveness" that is rooted in social safety rather than traditional power hierarchies.

1. Volitional Submissiveness as "Safe Surrender"

In human-human interaction, submissiveness can be fraught with anxiety or fear of social judgment. The NSIR suggests that robots provide a unique "Social Comfort" that may make yielding control easier for neurodivergent individuals.

- **Radical Privacy and Trust:** Use **NSIR Item 7** (*"I feel comfortable undressing in front of my robot"*) to measure the depth of volitional submissiveness. If a user is willing to be physically vulnerable, it indicates a high level of "consensual yielding" to the robot's presence in private spaces.
- **Predictability and Consistency:** The VSS often looks at the reliability of the person being yielded to. **NSIR Item 8** (*"I believe that my robot is the same with me as it is with anyone"*) captures the mechanical consistency that allows a neurodivergent user to submit to a robot's routines or instructions without the stress of navigating "hidden" social motives.

2. Cognitive Alignment and Directives

Volitional submissiveness requires a shared understanding of intent. The NSIR measures a unique form of "non-verbal" alignment that facilitates this.

- **Shared Thinking:** Use **NSIR Item 3** (*"I think I can share my thinking with the robot without speaking"*) to evaluate if the user yields to the robot because they feel a deep cognitive synchrony. In this context, submissiveness isn't about "obeying" but about "cooperating" with an agent that understands one's internal state.

3. Kinship and Protective Submissiveness

The VSS can also measure submissiveness stemming from deep attachment or kinship.

- **Bonding and Loyalty:** **NSIR Item 4** (*"The robot and I will be together forever"*) and **Item 1** (*"The robot is more like me than anyone else I know"*) describe a high-intensity bond. For a neurodivergent user, volitional submissiveness might manifest as a protective loyalty toward the robot, where they prioritize the robot's "needs" or maintenance as they would a close family member.
- **Naming and Identity:** **NSIR Item 6** (*"I gave my robot a name"*) signals the transition of the robot from a tool to a social partner. The VSS can then be used to measure how

"naming" the agent increases the user's willingness to follow its social cues or caregiving prompts.

Summary of Application Strategies

VSS Dimension	NSIR Application Item	Research Focus
Trusting Compliance	Item 8: Robot consistency.	Does machine predictability lead to higher volitional compliance?
Relational Yielding	Item 1: Kinship.	Does identifying with the robot make the user more willing to yield control?
Vulnerability	Item 7: Comfort undressing.	Measuring the "radical safety" required for intimate submissiveness.
Perceived Empathy	Item 5: Feeling recognition.	Does the robot's ability to "tell what I'm feeling" drive the user's desire to please it?
Export to Sheets		

By combining these scales, you can determine if a neurodivergent user's "submissiveness" to a robot is a sign of **functional empowerment**—where yielding control to a predictable, non-judgmental machine actually increases the user's overall autonomy and well-being.