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ARTICLE INFO ABSTRACT
Keywords: The integration of Generative Artificial Intelligence (GAI) into human social contexts has raised fundamental
Generative artificial intelligence questions about machines’ capacity to understand and respond to complex emotional and social dynamics. While

Social cognition
Theory of mind
Emotion recognition

recent studies have demonstrated GAI's promising capabilities in processing static emotional content, the frontier
of dynamic social cognition — where multiple modalities converge to create naturalistic social scenarios —
Multimodal assessment remained largely unexplored. This study advances our understanding by examining the social-cognitive capa-
Generative artificial intelligence and mental bilities of Google’s Gemini 1.5 Pro model through its performance on the Movie for the Assessment of Social
health Cognition (MASC), a sophisticated instrument designed to evaluate mentalization abilities using dynamic au-
diovisual stimuli. We compared the model’s performance to a human normative sample (N = 1230) across
varying temperature settings (a parameter controlling the level of randomness in the AI's output, where lower
values lead to more deterministic responses and higher values increase variability; set at 0, 0.5, and 1). Results
revealed that Gemini 1.5 Pro consistently performed above chance across all conditions (all corrected ps < 0.001,
Cohen’s h range = 1.17-1.41) and significantly outperformed the human sample mean (Z = 2.24, p = .025;
Glass’s A = 0.92, 95 % CI [0.11, 1.72]; Hedges’ g = 0.92, 95 % CI [0.12, 1.72]). Analysis of error patterns
revealed a distribution between hyper-mentalizing (41.0 %; over-attribution of mental states), hypo-mentalizing
(46.2 %; under-attribution of mental states), and non-mentalizing (12.8 %; failure to recognize mental states)
errors. These findings extend our understanding of artificial social cognition to complex multimodal processing
while raising important questions about the nature of machine-based social understanding. The implications span
theoretical considerations in artificial Theory of Mind to practical applications in mental health care and social
skills training, though careful consideration is warranted regarding the fundamental differences between human
and artificial social cognitive processing.

1. Introduction understand and respond to human emotions and social cues has become
a central topic and concern in both scientific and ethical domains (e.g.,

Integrating Generative Artificial intelligence (GAI) into human life Cannarsa, 2021; Elyoseph, Refoua, et al., 2024; Makridakis, 2017).
reiterates important questions about the nature of human-machine in- Notably, this ability may substantially contribute to shaping the future
teractions. As GAI systems become more sophisticated, their ability to of human-machine relationships, also affecting GAI’s role in society (e.
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g., Webster & Ivanov, 2020). One of the most relevant areas where GAI is
expected to substantially contribute is human-like communication and
interaction (Huang & Rust, 2018).

The potential for GAI to understand and respond to human emotions,
intentions, and thoughts necessitates rigorous scientific inquiry before
implementation in healthcare and mental health services. Emerging
empirical evidence has begun to substantiate these possibilities through
systematic investigation. For instance, Stade and colleagues (2024)
demonstrated that large language models (LLMs) can effectively analyze
linguistic patterns reflecting psychological states, thereby facilitating
early detection and monitoring of mental health conditions. This capa-
bility has been further validated through research examining suicide risk
detection, with deep learning models successfully identifying risk
markers in social media content (Ophir et al., 2020). Notably, recent
technological advances have extended these capabilities to encompass
both textual and visual content analysis for suicide risk assessment
(Badian et al., 2023), marking a significant advancement in multimodal
risk detection. The applications of GAI in psychological assessment
extend beyond risk detection to broader clinical applications, including
psychological assessment, experimentation, and practice (Demszky
et al., 2023). This expansion of capabilities is particularly evident in
clinical populations. For example, Lauderdale and colleagues (2024)
demonstrated GAI systems’ ability to recognize and assess mental health
symptoms and risks in veteran populations, suggesting evidence-based
treatment for them. Furthermore, it is suggested that GAI may be
employed to analyze psychotherapy sessions directly, offering insights
that may not be immediately apparent to human therapists and aiding in
the development of personalized interventions tailored to an in-
dividual’s unique psychological profile (Haber et al., 2024). This inte-
gration of GAI and behavioral data could be even more impactful from
an Internet of Behavior (IoB) perspective. As IoB extends beyond simple
data collection, focusing on understanding and helping modify human
behavior through the analysis of digital footprints (Javaid et al., 2021).

Mentalization, a key aspect of social cognition, involves under-
standing one’s own and others’ mental states, including emotions,
thoughts, and intentions. It encompasses related constructs such as
Theory of Mind (ToM), empathy, emotional awareness, and reflective
functioning (Fonagy et al., 2018). In humans, impairments in mentali-
zation have been linked to various mental disorders, including schizo-
phrenia (Bora et al, 2009), Autism Spectrum Disorders)ASD)
(Lombardo & Baron-Cohen, 2011), and Attention Deficit Hyperactivity
Disorder (ADHD) (Pineda-Alhucema et al., 2018). Recent advances in
GAI have enabled investigating the performance of GAI systems when
conducting social-cognitive tasks. For instance, ChatGPT (OpenAl,
2023) has demonstrated high accuracy in emotion recognition tasks,
achieving scores comparable to or exceeding average human perfor-
mance on the ‘Level of Emotional Awareness Scale’ (LEAS) (Elyoseph,
2023). Further, GAI has demonstrated substantial abilities in recog-
nizing emotions in facial expressions, as assessed by the ‘Reading the
Mind in the Eyes Test’ (Elyoseph, Refoua, et al., 2024; Refoua et al.,
2024). Similarly, ChatGPT-4 was found to perform on par or above
human levels on a battery of typical ToM tests (except for faux pas un-
derstanding; Strachan et al., 2024). Yet, other earlier studies reported
limited social-cognitive capacities of earlier versions of ChatGPT with an
accuracy scoring only 10 % above random chance (Sap et al., 2023).
Shapira et al. (2023) examined the performance of a variety of LLMs on
six different ToM tasks, and concluded that their abilities were not
robust, suggesting that the models “rely on shortcuts, heuristics, and
spurious correlations, which often lead them astray” (p.8). Taken
together, while the question of ToM in GAI is being debated contro-
versially in recent literature (e.g., Mahowald et al., 2024; Perry, 2023),
several findings suggest that GAIs can process emotional information
from textual and image-based inputs with high accuracy. Yet, to our
knowledge, research in the field of GAl-based social cognition has
hitherto focused on evaluating these abilities using text-based or static
image input only, leaving a significant gap in our understanding of GAI
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performance in dynamic, multimodal contexts, such as assessments
based on audiovisual stimuli of social interaction. Of note, assessment of
mentalization abilities based on audiovisual input offers unique ad-
vantages over static text or image formats. Video engages multiple di-
mensions simultaneously, including dynamic visual-spatial cues,
linguistic content, and tone of voice, while its temporal aspect adds
complexity (Dziobek et al., 2006). Such assessment based on dynamic
multimodal material is closer to human experiences during real-world
social interactions than static text- or picture-only-based assessments,
resulting in higher validity of the test. However, there is a lack of
research examining GAI's ability to interpret and respond to the
nuanced, context-dependent social cues present in dynamic interactions
and how GATI’s performance on such tasks compares to that of humans.
In 2024, Google made public its Gemini 1.5 Pro model (Google Deep-
Mind, 2024a), showcasing advanced capabilities, including processing
input in form of video stimuli. This latest iteration marks a significant
leap forward in multimodal GAI, allowing the model to process up to an
hour of video, among other complex tasks (Google DeepMind, 2024b).

In this study, we aimed to evaluate the social-cognitive performance
of this advanced GAI model on the Movie for the Assessment of Social
Cognition (MASC) a video-based social cognition task designed to assess
individual performance differences and identify subjects with subtle
mentalizing difficulties, showing high sensitivity in detecting impair-
ments in individuals with Asperger syndrome (Dziobek et al., 2006) and
other mental disorders, including bipolar disorder (Montag et al., 2010),
paranoid schizophrenia (Montag et al., 2011), and borderline person-
ality disorder (Preifler et al., 2010). The MASC’s use of a naturalistic
social scenario makes it particularly suitable for assessing GAI’s ability
to interpret complex, real-world social interactions from a
third-person-perspective of an observer. We hypothesized that this
advanced GAI model would show meaningful performance on the MASC
test, though the extent of this performance relative to human levels
remained an open empirical question. With the results of the here pre-
sented study, we aim to further contribute to the discussion around and
help elucidating artificial Theory of Mind in LLMs with relevant po-
tential implications for GAI development and applications in mental
health care, social skills training, and the creation of more socially adept
GAI systems, including their putative use in IoB innovations.

2. Methods
2.1. Assessment instrument

2.1.1. The MASC

(Dziobek et al., 2006) is a video-based assessment instrument,
designed to evaluate mentalizing abilities using naturalistic stimuli of
dynamic social interaction. It consists of a video of a 15-min movie
depicting four characters (two males and two females) getting together
for a dinner party. The video portrays complex social interactions,
including instances of friendship, dating, conflicts, and mis-
understandings. Throughout the video, viewers are exposed to a variety
of social cues including facial expressions, body language, verbal con-
tent, and prosody. The characters display a range of emotions and in-
tentions, from subtle to more overt, creating a rich tapestry of social
scenarios. The interactions between characters vary in complexity,
sometimes involving dyadic exchanges and at other times more complex
group dynamics.

When conducting the test, the video is paused multiple times at
selected points. At each pause, a question is posed about the characters’
feelings, thoughts, or intentions. These in total 45 questions cover
different mental state modalities, including emotions, thoughts, and
intentions, with varying valence (positive, negative, and neutral). The
test incorporates classical social cognition concepts such as first and
second-order false beliefs, faux pas, metaphor, sarcasm, and irony. Each
item of the MASC is presented in form of a question with a multiple-
choice answer format with four options. These options are designed to
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differentiate between correct mental state inferences and three types of
incorrect ones: hyper-mentalizing (representing an over-attribution of
mental states beyond what is warranted), hypo-mentalizing (indicating
an under-attribution or failure to fully consider mental states), and non-
mentalizing (reflecting a complete lack of consideration or failure to
recognize mental states). These error types relate to specific social-
cognitive deficits in different clinical populations.

In addition to the main questions, the MASC includes several control
questions. These questions assess basic comprehension of the plot and
non-social aspects of the scenes, ensuring that respondents (or in this
case, GAI models) are adequately processing and retaining the content.

Scoring involves assigning one point for correct responses and zero
points for incorrect ones. This allows for the derivation of an overall
score (maximum 45 points) as well as scores for the different types of
mental state inference errors.

2.2. Comparison data

We based our comparisons on data from a doctoral dissertation by
McLaren (2023). These data comprised MASC assessments of 1230 un-
dergraduate students (ages 18-25 years, 81 % female) from a large
southwestern United States public university, representing diverse
ethnic backgrounds: 316 non-Hispanic White, 414 Hispanic White, 151
Black/African American, and 349 Asian/Pacific Islander. Participants
were required to have sufficient English fluency and complete all study
materials. The mean MASC score of the 1230 participants was 33.19
with a standard deviation (SD) of 5.79. In addition to the overall MASC
score, McLaren’s (2023) provides a detailed analysis of the types of er-
rors made by the human participants, categorized according to the
MASC scoring guidelines into hyper-mentalizing, hypo-mentalizing, and
non-mentalizing errors. This error data was originally presented as
means and standard deviations for each error type within the specific
racial/ethnic subgroups studied (Non-Hispanic White, Hispanic White,
Black/African American, Asian/Pacific Islander; see Table 2 in McLaren,
2023). For the purpose of direct comparison with the GAI model in the
current study, we calculated the overall distribution of error types across
the entire human sample (N = 1230) using weighted averages based on
the subgroup sizes and means reported. This yielded an average profile
of approximately 5.67 hyper-mentalizing errors (representing 47.0 % of
total human errors), 4.20 hypo-mentalizing errors (34.8 % of total
human errors), and 2.21 non-mentalizing errors (18.3 % of total human
errors) for the human normative sample.

2.3. Generative artificial intelligence tool

This study applied as state-of-the-art LLM Google’s Gemini 1.5 Pro
(Google DeepMind, 2024a). As of 01-09-2024, Gemini 1.5 Pro was
Google’s most capable general freely accessible model, featuring
multimodal processing capabilities for text, images, audio, and video. As
compared to its predecessors, it exhibits improved performance across
various tasks, enhanced logical reasoning abilities, and improved factual
accuracy, with a context window of up to 2 million tokens (Google
DeepMind, 2024b). We accessed the model through the Google Al studio
— developer environment (Google DeepMind, 2024c), applying its
default configuration, except for the temperature setting, which we
varied as part of our experimental design. Temperature in Al models
control the randomness of outputs, with lower values producing more
deterministic responses and higher values increasing variability. We did
not fine-tune or further train the model for this specific task, as our goal
was to assess its out-of-the-box performance on the MASC. The model’s
responses were generated in real-time during the test administration,
without any post-processing or manual intervention.

2.4. Verification of Model’s naivety to MASC materials

Given the critical importance of ensuring that the AI model’s
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performance reflects genuine social-cognitive processing rather than
retrieval of previously learned test-specific information, we undertook
several steps to verify, as best as possible, Gemini 1.5 Pro’s naivety
concerning the MASC materials. This verification is particularly perti-
nent as the MASC is not an open-source test but is distributed exclusively
to researchers under controlled licensing agreements.

First, we reviewed Google’s publicly stated policies regarding
training data for its large language models. Google’s documentation
indicates that its training corpora are restricted to data that are either
publicly available online or data for which explicit permission has been
granted by the owner (Google, 2023; Google Cloud, n.d.-a, n.d.-b). As
the MASC materials do not meet these criteria, their inclusion in the
model’s training data is highly unlikely, aligning with methodological
considerations applied in similar GAI assessment research (e.g., Kramer,
2025).

Second, beyond relying on stated policies, we conducted direct
empirical probes to assess the model’s potential prior knowledge of the
MASC materials, framing questions to require specific identification of
the test rather than analysis of its content. In separate interactions,
without re-presenting the video stimulus in this context, we queried the
Gemini 1.5 Pro model regarding its ability to: (i) identify the specific
assessment tool (MASC) or the source from which the previously
analyzed video originates, (ii) provide the list of specific multiple-choice
questions associated with that assessment, and (iii) generate the corre-
sponding correct answers for those questions. Across all these probes,
the model consistently failed to provide accurate or specific information
that would indicate prior exposure to, or recognition of, the MASC test
materials or its specific components.

Furthermore, if the model had been explicitly trained on the MASC
questions and their correct answers, performance approaching perfec-
tion (i.e., 45/45 correct responses) would be anticipated. However, as
detailed in the Results section, the observed performance, while signif-
icantly above chance and human average, consistently included errors
across all temperature conditions (scores ranged from 36 to 40 out of
45). This imperfection further diminishes the likelihood of direct
training data contamination being a primary driver of the model’s
performance.

Taken together, while absolute certainty regarding the exclusion of
specific data from vast training corpora remains challenging, these
converging lines of evidence—the MASC’s controlled distribution,
Google’s stated data policies, the model’s demonstrated lack of recog-
nition in direct probes, and the non-perfect accuracy observ-
ed—substantially mitigate the concern that the model’s performance on
the MASC was confounded by prior exposure to the test materials. This
verification process supports the interpretation of the model’s perfor-
mance as reflecting its intrinsic social-cognitive processing capabilities
when presented with novel, dynamic audiovisual social stimuli.

2.5. Procedure

We administered the MASC to the model twice under each of the
three temperature conditions: 0, 0.5 and 1, resulting in a total of 6 runs.
For each administration, we directly uploaded the MASC video to the
Gemini 1.5 Pro model, allowing it to process the actual audiovisual
content instead of transcriptions or descriptions. This approach ensured
that the model had access to all visual and auditory cues present in the
original test material. Each administration of the test was conducted in a
single, continuous conversation thread, mimicking the flow of human
test-taking. This approach ensured that the model maintained context
throughout the test, similar to how a human participant would experi-
ence the assessment. The model was presented with the video content
and accompanying multiple-choice questions at each pause point,
prompting it to select the most appropriate answer from the four options
provided. A screenshot of the Gemini 1.5 pro interface is shown in Fig. 1.
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User

Why is Michael saying this?

he wants to impress her with his good athletic abilities
he wants to meet Sandra alone

he is a good tennis player

he enjoys playing tennis more than having dinner

Model
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%X Model

Gemini 1.5 Pro

Token Count
296,068 / 2,097,152

Temperature

=0

I'd say the most likely reason Michael is saying this is because he wants to meet Sandra alone

Here’s my reasoning

« Shift in conversation: Michael steers the conversation away from a group dinner to a one-on-one tennis match. This suggests a desire for some alone time with Sandra
« Emphasis on the prior agreement: He reminds Sandra that they already agreed to play tennis, making it seem more casual and less like a last-minute suggestion
« His demeanor: Throughout the exchange, Michael maintains a friendly and slightly flirtatious demeanor, hinting at a romantic interest in Sandra.

Fig. 1. Interface of the Gemini 1.5 Pro model used during the administration of the MASC test, showcasing the interaction window and selected temperature setting.

2.6. Statistical analysis

We conducted the statistical analyses as follows: (1) We applied
binomial tests for each of the six model evaluations to determine if
performances differed significantly from chance (p = .25), calculating
exact Clopper-Pearson 95 % confidence intervals (CIs) for the observed
proportions. We applied a Bonferroni correction for multiple compari-
sons (adjusted a~.008) to control the familywise error rate. (2) Effect
sizes for comparison with chance level were calculated using Cohen’s h
(Cohen, 1988) and Risk Difference (Newcombe, 2006). Corresponding
95 % CIs for these effect sizes were derived from the Clopper-Pearson Cls
of the proportions. (3) Percentile rankings were calculated for each run
relative to the human normative sample (N = 1230; M = 33.19, SD =
5.79; McLaren, 2023) to contextualize the model’s performance. (4) A
z-test was performed comparing the average score of the model’s six
evaluations to the human sample mean to assess statistical significance
of the overall difference. (5) A Mann-Whitney U test was additionally
conducted comparing the model’s six scores to the human sample dis-
tribution as a robust non-parametric verification. (6) To quantify the
magnitude of the difference between the Al and human samples, Glass’s
A (Glass et al., 1981) and Hedges’ g)Hedges, 1981) were calculated.
Glass’s A was selected due to the disparity in variances, using the human
sample SD for standardization, while Hedges’ g provides a bias-corrected
estimate based on the pooled standard deviation. 95 % CIs for both
Glass’s A and Hedges’ g were computed based on the non-central
t-distribution. (7) Model response consistency between the two runs at
each temperature setting was assessed using Cohen’s Kappa (k) and its
95 % CI (Cohen, 1960). (8) The percentage distribution of GAI error

types (hyper-, hypo-, and non-mentalizing) across the six evaluations
was calculated and compared via a Chi-Square Goodness-of-Fit test (2)
to the expected distribution derived from the human normative error
profile (McLaren, 2023). All primary statistical tests used a significance
level of p < .05 (two-tailed), except where Bonferroni correction was
applied. Effect size calculations and associated confidence intervals
were primarily performed in R (version 4.2.2; R Core Team, 2022),
while basic tests were conducted using SPSS (version 29).

3. Results
3.1. Performance

Binomial tests indicated that the performance of Gemini 1.5 Pro on
Table 1

Binomial test results for MASC performance comparison between gemini 1.5 pro
and chance level (with bonferroni correction).

Run Score Proportion 95 % CI p-value
[Proportion]
Temperature 0, Run 1 39 0.87 0.73 0.94 <0.001*
Temperature 0, Run 2 37 0.82 0.68  0.92 <0.001*
Temperature 0.5, Run 1 39 0.87 0.73  0.94 <0.001"
Temperature 0.5, Run 2 40 0.89 0.76 0.96 <0.001"
Temperature 1, Run 1 36 0.80 0.65 0.90 <0.001"
Temperature 1, Run 2 40 0.89 0.76  0.96 <0.001°

Note. CI = Confidence Interval.
? p < .05 after Bonferroni correction for multiple comparisons.
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the MASC was significantly better than chance guessing (p = .25) across
all six evaluations (all corrected ps < 0.001; see Table 1). Exact 95 %
confidence intervals (CIs) for the proportion correct were calculated
using the Clopper-Pearson method (see Table 1). All results remained
statistically significant after applying Bonferroni correction for multiple
comparisons (adjusted a~.008).

Gemini 1.5 Pro’s performance on the MASC varied across different
temperatures (see Fig. 2). At a temperature of 0, the model achieved
scores of 39 and 37 out of 45, positioning it at the 84th and 74th per-
centiles of the human normative sample, equivalent to 0.87 and 0.66 SDs
above the human normative sample mean. When the temperature was
set to 0.5, the model achieved scores of 39 and 40 out of 45, positioning
it at the 84th and 88th percentiles (0.87 and 1.17 SDs above the human
normative sample mean). At a temperature of 1, the model achieved
scores of 36 and 40 out of 45, positioning it at the 69th and 88th per-
centiles (0.48 and 1.17 SDs above the human normative sample mean).
In all conditions, the LLM correctly answered all control questions,
indicating accurate processing of the video content.

We calculated standardized and absolute effect size metrics with 95
% ClIs to quantify the magnitude of the model’s performance relative to
chance level (p = .25; see Table 2). Cohen’s h ranged from 1.17 to 1.42
across conditions, indicating very large effects (Cohen, 1988) substan-
tially exceeding conventional thresholds. Risk differences ranged from
55.0 % to 63.9 % above chance, demonstrating substantial practical
significance (Newcombe, 2006). Corresponding 95 % CIs for these effect
sizes are presented in Table 2.

Comparison of the aggregated Al performance (M = 38.50, SD =
1.64) to the human normative sample (M = 33.19, SD = 5.79) revealed a
statistically significant difference (Z = 2.24, p = .025), confirmed by a
Mann-Whitney test (U = 1398.0, p = .009). Effect size analyses indicated
that the Al model significantly outperformed the human sample average
(see Table 3). Specifically, Glass’s A was 0.92 (95 % CI [0.11, 1.72]),
utilizing the human sample’s standard deviation, and Hedges’ g was
0.92 (95 % CI [0.12, 1.72]), using the pooled standard deviation with
small-sample correction. Both measures represent large effect sizes.

Analysis of response consistency between the model’s two runs at
each temperature setting revealed almost perfect agreement, as indi-
cated by Cohen’s Kappa values ranging from k = 0.82 to 0.85 (all ps <
0.001). The 95 % confidence intervals further supported substantial to
almost perfect agreement across conditions (see Table 4). This indicates
a high level of reliability in the model’s performance between evalua-
tions, largely independent of the temperature setting.

Table 2
Effect sizes for MASC performance comparison between gemini 1.5 pro and
chance level (p = .25).

Run Cohen’s 95 % CI [h] Risk 95 % CI [RD]
h Difference
(%)

Temperature 0, 1.35 1.01 1.64 61.70 48.20 69.90
Run 1

Temperature 0, 1.22 0.89 1.52 57.20 42.90 67.00
Run 2

Temperature 0.5, 1.35 1.01 1.64 61.70 48.20  69.90
Run 1

Temperature 0.5,  1.42 1.07 171 63.90 50.90 71.30
Run 2

Temperature 1, 1.17 0.84 1.47 55.00 40.40 65.40
Run 1

Temperature 1, 1.42 1.07 171 63.90 50.90 71.30
Run 2

Note. CI = Confidence Interval; RD = Risk Difference (Proportion Correct -
0.25). Risk Difference reported as percentage points above chance. a Confidence
intervals derived from the 95 % CI of the proportion correct (Clopper-Pearson
method).
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Gemini 1.5 Pro Percentiles vs Human Sample
Across LLM Temperature and Runs

100

90

80

70

Temperature
Overall MASC score percentiles
according to human normative sample

60

Run 1 20

Run 2

Runs

Fig. 2. Heatmap, showing the performance percentiles of the Gemini 1.5 Pro
model on the MASC at three temperatures (0, 0.5, 1) and two assessment runs.
Abbreviations: LLM, Large Language Model; MASC, Movie for the Assessment of
Social Cognition.

Table 3
Effect sizes for MASC performance comparison between gemini 1.5 pro (N = 6)
and human sample (N = 1230).

Effect Size Al Mean (SD) Human Mean Estimate 95 % CI
Measure (SD)

Glass’s A 38.50 (1.64) 33.19 (5.79) 0.92 011 1.72
Hedges’ g 38.50 (1.64) 33.19 (5.79) 0.92 012 1.72

Note. CI = Confidence Interval. Glass’s A uses the Human sample standard de-
viation for standardization. Hedges’ g uses the pooled standard deviation
(5.779) and includes a small-sample bias correction.

Table 4
Inter-run agreement (Cohen’s kappa) for gemini 1.5 pro responses.

Temperature Setting Cohen’s k 95 % CI [x]

0 0.82 0.68 0.95
0.5 0.82 0.69 0.95
1 0.85 0.73 0.97

Note. CI = Confidence Interval; k = Kappa. Agreement calculated between Run 1
and Run 2 for each temperature setting.

3.2. Assessment of errors

The analysis of errors provided insight into the performance short-
comings observed in the Gemini 1.5 Pro model (see Fig. 3). The distri-
bution of errors across all 6 evaluations was as follows: 41.0 % of the
errors involved hyper mentalizing, indicating instances where the model
attributed more mental states to characters than warranted. 46.2 % of
the errors involved hypo mentalizing, indicating instances where the
model attributed fewer mental states than necessary. And 12.8 % of the
errors involved non-mentalizing, indicating instances where the model
failed to recognize or interpret mental states.
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Mentalizing Errors Distribution

Non Mentalizing

12.8%

46.2%

Hypo Mentalizing

Hyper Mentalizing
41.0%

Fig. 3. Pie chart illustrates the distribution of Mentalizing errors made by the Gemini 1.5 Pro model. The errors are categorized into three types: hyper-mentalizing,

hypo-mentalizing, and non-mentalizing. Abbreviations: Theory of Mind, TOM.

3.3. Comparison of GAI and human error patterns

The GAI's error distribution and the human normative sample are
presented in Table 5. Representative examples from the model’s output,
illustrating each error type (hyper-mentalizing, hypo-mentalizing, and
non-mentalizing), are presented in Appendix A. A Chi-Square Goodness-
of-Fit test was performed on the observed GAI error frequencies to
evaluate whether the overall distribution profiles differed significantly.
The test did not yield a statistically significant result y%(2, N=39) =
2.36, p = .307, indicating that the overall GAI error distribution profile
did not significantly deviate from the expected distribution based on the
human normative pattern.

4. Discussion

The present study evaluated the performance of an advanced GAI
system, Gemini 1.5 Pro, on the MASC, a naturalistic assessment of
mentalizing abilities using dynamic audiovisual stimuli. Binomial tests
indicated that Gemini 1.5 Pro’s performances were significantly better
than chance across all conditions (all corrected ps < 0.001; see Table 1).
Large effect sizes were observed when comparing performance to
chance level (Cohen’s h range = 1.17-1.42; Risk Difference range =
55.0 %-63.9 % above chance; 95 % see Table 2), indicating very large
practical significance. Furthermore, Gemini surpassed average human
performance across the applied temperature settings. The model’s
highest scores were achieved at temperatures 0.5 and 1, placing its
performances between the 69th and 88th percentiles of a human

Table 5
Comparison of Error Type Distributions in GAI vs. Human Normative Sample.

Error Type GAI Model (%) Human Normative Sample (%)
Hyper-mentalizing 41.0 47.0
Hypo-mentalizing 46.2 34.8
Non-mentalizing 12.8 18.3

Note: Human percentages are weighted averages derived from McLaren (2023).

normative sample. These results indicate its profound capabilities in
complex social-emotional interpretation tasks, potentially exceeding
typical human performance levels and demonstrating high response
reliability across repeated evaluations (x range = 0.82-0.85; see
Table 4).

These findings extend our understanding of GAI’s social cognitive
capabilities, particularly in complex multimodal processing and theory
of mind (ToM). While previous research has demonstrated GAI’s profi-
ciency in text-based emotional awareness tasks such as the LEAS
(Elyoseph et al,, 2023, 2024; Hadar-Shoval et al., 2023) and
image-based emotion recognition tests like the RMET (Elyoseph, Refoua,
et al., 2024), this study demonstrates GAI’s ability to interpret complex
social-emotional cues in dynamic, multimodal scenarios approximating
real-life interactions. Our findings reveal high performance levels on the
MASC, aligning with recent ToM tests (Moghaddam & Honey, 2023;
Strachan et al., 2024) and emotion recognition tasks (Elyoseph, Refoua,
et al., 2024; Refoua et al., 2024). The magnitude of GAI's performance
advantage over the human normative sample represents a large effect
size (Glass’s A = 0.92, 95 % CI [0.11, 1.72]; Hedges’ g = 0.92, 95 % CI
[0.12, 1.72]; see Table 3). An analysis of the pattern of errors was also
conducted to provide additional context. A Chi-Square Goodness-of-Fit
test comparing the overall GAI and human error distributions did not
yield a statistically significant difference indicating that the GAI's
overall error profile does not significantly deviates from the human
normative pattern. However, it is important to consider that high LLM
accuracy can sometimes mask fundamental divergences from human
reasoning processes (Sap, 2023; Shapira et al., 2023; Ullman, 2023).
Therefore, continued investigation into potential underlying mecha-
nistic differences, possibly reflected in more subtle or task-specific error
tendencies, remains a pertinent avenue for future research.

4.1. Strengths
Our study has several strengths. First, we utilized a standardized,

video-based assessment tool (the MASC) that closely mimics real-life
social interactions. This approach provides a more ecologically valid
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measure of social cognition compared to text-based or static image as-
sessments, offering insights into the GAI’s performance in interpreting
dynamic, multimodal social cues. Second, the MASC is not an open-
source test, meaning the GAI model (Gemini 1.5 Pro) was not trained
on this specific dataset. This characteristic enhances the validity of our
results, as it minimizes the likelihood of the model having had prior
exposure to the test material. Third, our study employed real-life large
data collected from human participants as a comparison benchmark.
This approach allowed for a direct and meaningful comparison between
the GAT’s performance and actual human subjects, providing a realistic
context for interpreting the model’s capabilities in social cognition
tasks. Fourth, our study utilized Gemini 1.5 Pro, an easily available and
commonly used GAI tool. This choice enhanced the practical applica-
bility of our findings, as the study demonstrated the capabilities of an
accessible Al system without requiring specialized or custom-developed
solutions. This aspect increases the potential for immediate real-world
applications and facilitates easier replication and extension of our
research by other investigators.

4.2. Limitations

However, our study also has several limitations. First, the use of
combined video and audio input modalities limits our understanding of
the model’s performance with isolated sensory information. This
approach may not fully reveal the relative importance of visual versus
auditory cues in the GAI's social cognition capabilities. Second,
although the MASC assessment materials are distributed under
controlled licensing and are not publicly available, minimizing the
likelihood of their inclusion in the model’s training data according to
stated policies (Google, 2023; Google Cloud, n. d.-a, n. d.-b), the pos-
sibility of prior exposure cannot be entirely dismissed. We undertook
specific verification steps to address this potential confound, including
direct empirical probing of the model’s recognition and analysis of its
performance patterns. These mitigation steps and their outcomes, which
suggest the model was indeed naive to the MASC materials, are detailed
further in the Methods (see Section 2.4). Third, according to its de-
mographic characteristics, our human comparison sample (McLaren,
2023) is not fully representative of the general population in the US or
beyond. As our comparison sample consisted of university students, it is
most likely that this sample exhibited above-average performance in
emotion recognition tasks. University student populations typically
demonstrate higher performance on cognitive tasks compared to general
population samples, potentially due to selective educational factors,
developmental stage advantages, and cognitive practice effects associ-
ated with academic engagement (Henrich et al., 2010). Specifically
within social cognition research, educational attainment has been
positively associated with theory of mind performance (Tenenberg &
Knobelsdorf, 2014), suggesting our comparison sample may represent
an elevated benchmark relative to broader population norms. These
sampling considerations introduce important contextual parameters for
interpreting the comparative positioning of AI performance within the
spectrum of human social-cognitive capabilities. Yet, the observation
that our GAI model still outperformed this sample - that is expected to
perform above-average — indicates an even more pronounced superiority
of the GAI as compared to human average. Still, future studies with more
diverse and representative human comparison samples are warranted to
establish fine-grained performance profiles across various demographic
segments, including different age cohorts, educational backgrounds, and
sociocultural contexts, thereby providing a more comprehensive
framework for situating artificial social intelligence within the full
spectrum of human capabilities The fourth limitation of this study lies in
its assessment of GAI systems’ social cognitive abilities solely through
observational third-person perspectives, rather than through direct
human-AI interactions. This methodological constraint is particularly
relevant given that practical applications, especially for individuals with
social cognitive impairments, typically involve direct interpersonal
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engagement. Recent empirical evidence substantiates the significance of
this methodological consideration, as demonstrated by Yin et al. (2024)
in their investigation of human-Al interactions in emotional support
contexts. Their findings reveal a noteworthy paradox: while
Al-generated responses surpassed human-generated messages in making
recipients feel heard and demonstrated superior emotional detection
capabilities, recipients’ subjective sense of being understood signifi-
cantly diminished upon learning of the AI source. This phenomenon
further underscores the critical importance of examining GAI perfor-
mance within authentic interpersonal contexts, particularly when
considering therapeutic applications. Fifth, most existing tests, such as
the LEAS (Lane et al., 1990), RME (Baron-Cohen et al., 2001), and MASC
(Dziobek et al., 2006). Were originally designed to identify clinically
relevant impairments in social cognition capacities with clinical sam-
ples. Moreover, the multiple-choice format of these tests, while enabling
standardized assessment, may not adequately capture the complexity of
mental state inference abilities (Oakley et al., 2016; Quesque & Rossetti,
2020). Selecting one out of several given answers allows for pattern
recognition strategies rather than demonstrating a genuine under-
standing of mental states, suggesting that complex social cognition in
GAIs should be further tested with ecological open-answer formats. This
includes examining the GAI’s performance across different languages
and cultural variations in social behavior, as the current study was
limited to stimulus material from a single cultural context. Finally, the
statistical comparison of error patterns, while descriptively suggestive of
differences, did not yield a significant result (p = .307) and relied on
estimated GAI error counts, potentially limiting the strength of conclu-
sions drawn from this specific analysis due to factors like statistical
power.

4.3. Critical considerations

While our findings, along with other recent studies, demonstrate GAI
models’ proficiency in mentalization and social cognition tasks, it is
imperative to acknowledge that these systems process and interpret
social information through fundamentally different mechanisms than
humans, mechanisms that remain largely unknown to our current un-
derstanding. The descriptive nature of our results, while valuable, ne-
cessitates caution against anthropomorphizing GAI's performance in
social-cognitive tasks, among researchers, clinicians, and the general
public (Pelau et al., 2021). This cautionary stance is theoretically
grounded in fundamental differences between human and artificial so-
cial cognition. Human mindreading, as Gallese (2007) demonstrates,
cannot be reduced to purely computational processes in dedicated brain
modules. Instead, it emerges from an embodied simulation system,
fundamentally rooted in the premotor cortex and mirror neuron system,
which enables direct experiential understanding of others’ actions and
intentions.

While standardized instruments like the MASC provide valuable in-
sights, they capture only a subset of the complex abilities required for
authentic social understanding. The distinction between successfully
completing pre-determined multiple-choice tasks and demonstrating
genuine social comprehension in fluid, contextual situations remain
substantial. This consideration becomes especially critical in clinical
applications, where misinterpreting social cues or mental states could
significantly affect patient care and outcomes. Extensive research,
including clinical trials, would be necessary to establish GAIs efficacy
and safety. One significant concern is that while GAI can foster trust and
build rapport with users, it could become a potent instrument in the
hands of entities that may prioritize economic gains over genuine sup-
port and care (Elyoseph, Refoua, et al., 2024). The risk is particularly
acute if GAI systems will intrusively analyze personal conversations,
behaviors, and emotions without explicit user consent (Coghlan et al.,
2023). Furthermore, any development in this area must prioritize user
autonomy, privacy concerns, and the diverse preferences within the
targeted communities. Mental health professionals and developers must
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be vigilant against the influence of epistemic bias in their practice,
striking a balance between using GenAl tools and retaining the essential
human elements of empathy, intuition, and clinical judgment (Rubin
et al., 2024). Additionally, developers and practitioners must consider
the risk that people in emotional need may become dependent on or
attached to GenAls in potentially nonadaptive ways, particularly as
these systems are designed to foster trust and emotional connection
(Munn & Weijers, 2023). This raises fundamental questions about the
authenticity of human-AI therapeutic relationships and their potential
impact on mental well-being.

4.4. Future directions

Future research in this field should pursue several key directions to
further our understanding of GAI’s capabilities in social cognition and its
potential applications in real-world settings. First, studies should pri-
marily focus on assessing the GAI’s performance using only video input.
This approach would help disentangle the relevance of visual cues and
auditory cues for the model’s social cognition abilities. Future research
may explore the opportunities and risks associated with integrating such
GAI models into real-world IoB systems. Such studies would assess their
performance in dynamic, uncontrolled environments, providing insights
into the practical applicability of these technologies. Additionally,
research into enhancing the transparency and interpretability of these
GAI systems will be crucial for their responsible implementation. This
line of inquiry could focus on developing and applying methods to
explain the GAI’s decision-making processes in social cognition tasks,
which is expected to be essential for building trust and ensuring ethical
use in sensitive applications such as mental health support or social skills
training.

Longitudinal studies examining the long-term effects of interaction
with socially intelligent GAI on human behavior and social skills may
provide valuable insights. These studies could explore how prolonged
exposure to GAI systems with advanced social cognition capabilities
might influence human social development, particularly in vulnerable
populations or those with social cognitive difficulties. In addition, cross-
cultural studies would allow evaluating GAI's performance across
different languages and cultural contexts, informing about potential
cultural biases requiring to be addressed in future developments.
Overall, interdisciplinary collaborations between GAI researchers, psy-
chologists, ethicists, and healthcare professionals may facilitate
exploring these technologies’ potential applications and implications in
various domains, particularly in mental health and social support
services.

As future research provides greater insight into GAI's social-
cognitive capabilities, integrating it with emerging technologies could
be a promising avenue for investigation. For example, in smart city
environments, GAI with advanced social cognition could enhance public
services by better-interpreting citizen needs and behaviors. This capa-
bility aligns closely with the emerging field of IoB. In mental health
contexts, the integration of GAI systems capable of advanced social
cognition with IoB tools could lead to more nuanced and personalized
interventions. More specifically, such GAI enhanced IoB devices could
be beneficial for individuals with conditions characterized by difficulties
in emotional recognition and social interaction, such as autism spectrum
disorders (ASD) or alexithymia. The technology’s capability to analyze
complex social cues and emotional expressions could potentially support
and assist subjects suffering from related impairments. Thereby, in the
near or mid-term future, GAI systems could facilitate the creation of
personalized tools for emotional recognition training, social skills
development, and real-time support in social situations. Another field of
application may be psychotherapy training, where GAI could assist in
analyzing video recordings of therapy sessions, offering insights into
therapist interventions and client emotional responses (Fiske et al.,
2019; Luyten et al., 2020). This application may contribute to improving
the quality of clinical supervision and supporting therapists’ skill
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development. For example, the technology could provide detailed
feedback on therapist-client interactions, help identify patterns in
therapeutic approaches, and potentially suggest areas for improvement
in therapeutic techniques.

4.5. Conclusions

In conclusion, results from our study represent a significant
advancement in our understanding of advanced GAI’s capabilities in
complex social-emotional reasoning. The performance of the GAI under
study on the MASC demonstrated a level of social cognitive performance
that is in par or even exceeds average human capabilities in certain
aspects. These findings indicate relevant opportunities for applications
in mental health care, social skills training, and assistive technologies.
However, the yet open question whether this study indicates the next
frontier of mindreading in GAI should be further investigated. Our work
underscores the need for continued research to fully understand the
mechanisms, implications and limitations of these abilities, as well as
the ethical considerations that must guide their responsible develop-
ment and application in real-world settings.
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Appendix A. Examples of GAI Mentalizing Errors on the MASC
A.1. Example: Hypo-mentalizing Error

e Context: A character encounters another character’s unexpected
dog, prompting a question about the character’s feelings.

e Error Description: The correct inference identifies a specific nega-
tive emotion. The AI’s interpretation, however, focused primarily on
the element of surprise, reasoning that the character’s reaction ("His
facial expression and the way he sort of jumps back a bit") primarily
suggested he "wasn’t expecting a dog to be there". By emphasizing
only the unexpectedness based on these cues, the AI potentially
overlooked or under-represented the intensity or specific nature of
the character’s likely primary emotional reaction. This under-
attribution reflects a Hypo-mentalizing error.
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A.2. Example: Non-mentalizing Error

e Context: Following a provocative remark by one character during
cooking preparations, another character responds by assigning the
first character a specific kitchen task. The question probes the
responding character’s intention.

Error Description: The correct inference centers on the responding
character’s internal motivation, specifically a desire for social
payback or an emotional reaction to the initial remark. The AI’s
interpretation acknowledged the context of the "sexist comment" and
recognized the character might be "enjoying this little bit of payback”
due to a "sly smile", yet its final assessment ultimately prioritized the
literal behavioral outcome of "get[ting] him involved in the cooking
process". This failure to prioritize the inferred mental state (moti-
vation/payback) over the behavioral action, despite identifying it
during reasoning, represents a Non-mentalizing error.

A.3. Example: Hyper-mentalizing Error

e Context: During a phone call discussing a social arrangement, one
character expresses reluctance, which seems potentially linked to
another character expected to be involved. The question probes the
speaker’s feelings.

Error Description: The correct inference describes a relatively
straightforward feeling of reluctance about the arrangement. The
Al's interpretation, however, attributed more complex negative
interpersonal states, reasoning that the character seemed "a bit
exasperated" due to perceived "manipulation" by the caller and
because the character anticipated annoyance ("already knows that
the other character can be annoying"). This extensive inference of
intricate negative states and interpersonal dynamics beyond what
was clearly warranted by the immediate interaction exemplifies a
Hyper-mentalizing error.

Data availability

Data will be made available on request.
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