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A B S T R A C T

The integration of Generative Artificial Intelligence (GAI) into human social contexts has raised fundamental 
questions about machines’ capacity to understand and respond to complex emotional and social dynamics. While 
recent studies have demonstrated GAI’s promising capabilities in processing static emotional content, the frontier 
of dynamic social cognition – where multiple modalities converge to create naturalistic social scenarios – 
remained largely unexplored. This study advances our understanding by examining the social-cognitive capa
bilities of Google’s Gemini 1.5 Pro model through its performance on the Movie for the Assessment of Social 
Cognition (MASC), a sophisticated instrument designed to evaluate mentalization abilities using dynamic au
diovisual stimuli. We compared the model’s performance to a human normative sample (N = 1230) across 
varying temperature settings (a parameter controlling the level of randomness in the AI’s output, where lower 
values lead to more deterministic responses and higher values increase variability; set at 0, 0.5, and 1). Results 
revealed that Gemini 1.5 Pro consistently performed above chance across all conditions (all corrected ps < 0.001, 
Cohen’s h range = 1.17–1.41) and significantly outperformed the human sample mean (Z = 2.24, p = .025; 
Glass’s Δ = 0.92, 95 % CI [0.11, 1.72]; Hedges’ g = 0.92, 95 % CI [0.12, 1.72]). Analysis of error patterns 
revealed a distribution between hyper-mentalizing (41.0 %; over-attribution of mental states), hypo-mentalizing 
(46.2 %; under-attribution of mental states), and non-mentalizing (12.8 %; failure to recognize mental states) 
errors. These findings extend our understanding of artificial social cognition to complex multimodal processing 
while raising important questions about the nature of machine-based social understanding. The implications span 
theoretical considerations in artificial Theory of Mind to practical applications in mental health care and social 
skills training, though careful consideration is warranted regarding the fundamental differences between human 
and artificial social cognitive processing.

1. Introduction

Integrating Generative Artificial intelligence (GAI) into human life 
reiterates important questions about the nature of human-machine in
teractions. As GAI systems become more sophisticated, their ability to 

understand and respond to human emotions and social cues has become 
a central topic and concern in both scientific and ethical domains (e.g., 
Cannarsa, 2021; Elyoseph, Refoua, et al., 2024; Makridakis, 2017). 
Notably, this ability may substantially contribute to shaping the future 
of human-machine relationships, also affecting GAI’s role in society (e. 
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g., Webster & Ivanov, 2020). One of the most relevant areas where GAI is 
expected to substantially contribute is human-like communication and 
interaction (Huang & Rust, 2018).

The potential for GAI to understand and respond to human emotions, 
intentions, and thoughts necessitates rigorous scientific inquiry before 
implementation in healthcare and mental health services. Emerging 
empirical evidence has begun to substantiate these possibilities through 
systematic investigation. For instance, Stade and colleagues (2024)
demonstrated that large language models (LLMs) can effectively analyze 
linguistic patterns reflecting psychological states, thereby facilitating 
early detection and monitoring of mental health conditions. This capa
bility has been further validated through research examining suicide risk 
detection, with deep learning models successfully identifying risk 
markers in social media content (Ophir et al., 2020). Notably, recent 
technological advances have extended these capabilities to encompass 
both textual and visual content analysis for suicide risk assessment 
(Badian et al., 2023), marking a significant advancement in multimodal 
risk detection. The applications of GAI in psychological assessment 
extend beyond risk detection to broader clinical applications, including 
psychological assessment, experimentation, and practice (Demszky 
et al., 2023). This expansion of capabilities is particularly evident in 
clinical populations. For example, Lauderdale and colleagues (2024)
demonstrated GAI systems’ ability to recognize and assess mental health 
symptoms and risks in veteran populations, suggesting evidence-based 
treatment for them. Furthermore, it is suggested that GAI may be 
employed to analyze psychotherapy sessions directly, offering insights 
that may not be immediately apparent to human therapists and aiding in 
the development of personalized interventions tailored to an in
dividual’s unique psychological profile (Haber et al., 2024). This inte
gration of GAI and behavioral data could be even more impactful from 
an Internet of Behavior (IoB) perspective. As IoB extends beyond simple 
data collection, focusing on understanding and helping modify human 
behavior through the analysis of digital footprints (Javaid et al., 2021).

Mentalization, a key aspect of social cognition, involves under
standing one’s own and others’ mental states, including emotions, 
thoughts, and intentions. It encompasses related constructs such as 
Theory of Mind (ToM), empathy, emotional awareness, and reflective 
functioning (Fonagy et al., 2018). In humans, impairments in mentali
zation have been linked to various mental disorders, including schizo
phrenia (Bora et al., 2009), Autism Spectrum Disorders)ASD) 
(Lombardo & Baron-Cohen, 2011), and Attention Deficit Hyperactivity 
Disorder (ADHD) (Pineda-Alhucema et al., 2018). Recent advances in 
GAI have enabled investigating the performance of GAI systems when 
conducting social-cognitive tasks. For instance, ChatGPT (OpenAI, 
2023) has demonstrated high accuracy in emotion recognition tasks, 
achieving scores comparable to or exceeding average human perfor
mance on the ‘Level of Emotional Awareness Scale’ (LEAS) (Elyoseph, 
2023). Further, GAI has demonstrated substantial abilities in recog
nizing emotions in facial expressions, as assessed by the ‘Reading the 
Mind in the Eyes Test’ (Elyoseph, Refoua, et al., 2024; Refoua et al., 
2024). Similarly, ChatGPT-4 was found to perform on par or above 
human levels on a battery of typical ToM tests (except for faux pas un
derstanding; Strachan et al., 2024). Yet, other earlier studies reported 
limited social-cognitive capacities of earlier versions of ChatGPT with an 
accuracy scoring only 10 % above random chance (Sap et al., 2023). 
Shapira et al. (2023) examined the performance of a variety of LLMs on 
six different ToM tasks, and concluded that their abilities were not 
robust, suggesting that the models “rely on shortcuts, heuristics, and 
spurious correlations, which often lead them astray” (p.8). Taken 
together, while the question of ToM in GAI is being debated contro
versially in recent literature (e.g., Mahowald et al., 2024; Perry, 2023), 
several findings suggest that GAIs can process emotional information 
from textual and image-based inputs with high accuracy. Yet, to our 
knowledge, research in the field of GAI-based social cognition has 
hitherto focused on evaluating these abilities using text-based or static 
image input only, leaving a significant gap in our understanding of GAI 

performance in dynamic, multimodal contexts, such as assessments 
based on audiovisual stimuli of social interaction. Of note, assessment of 
mentalization abilities based on audiovisual input offers unique ad
vantages over static text or image formats. Video engages multiple di
mensions simultaneously, including dynamic visual-spatial cues, 
linguistic content, and tone of voice, while its temporal aspect adds 
complexity (Dziobek et al., 2006). Such assessment based on dynamic 
multimodal material is closer to human experiences during real-world 
social interactions than static text- or picture-only-based assessments, 
resulting in higher validity of the test. However, there is a lack of 
research examining GAI’s ability to interpret and respond to the 
nuanced, context-dependent social cues present in dynamic interactions 
and how GAI’s performance on such tasks compares to that of humans. 
In 2024, Google made public its Gemini 1.5 Pro model (Google Deep
Mind, 2024a), showcasing advanced capabilities, including processing 
input in form of video stimuli. This latest iteration marks a significant 
leap forward in multimodal GAI, allowing the model to process up to an 
hour of video, among other complex tasks (Google DeepMind, 2024b).

In this study, we aimed to evaluate the social-cognitive performance 
of this advanced GAI model on the Movie for the Assessment of Social 
Cognition (MASC) a video-based social cognition task designed to assess 
individual performance differences and identify subjects with subtle 
mentalizing difficulties, showing high sensitivity in detecting impair
ments in individuals with Asperger syndrome (Dziobek et al., 2006) and 
other mental disorders, including bipolar disorder (Montag et al., 2010), 
paranoid schizophrenia (Montag et al., 2011), and borderline person
ality disorder (Preiβler et al., 2010). The MASC’s use of a naturalistic 
social scenario makes it particularly suitable for assessing GAI’s ability 
to interpret complex, real-world social interactions from a 
third-person-perspective of an observer. We hypothesized that this 
advanced GAI model would show meaningful performance on the MASC 
test, though the extent of this performance relative to human levels 
remained an open empirical question. With the results of the here pre
sented study, we aim to further contribute to the discussion around and 
help elucidating artificial Theory of Mind in LLMs with relevant po
tential implications for GAI development and applications in mental 
health care, social skills training, and the creation of more socially adept 
GAI systems, including their putative use in IoB innovations.

2. Methods

2.1. Assessment instrument

2.1.1. The MASC
(Dziobek et al., 2006) is a video-based assessment instrument, 

designed to evaluate mentalizing abilities using naturalistic stimuli of 
dynamic social interaction. It consists of a video of a 15-min movie 
depicting four characters (two males and two females) getting together 
for a dinner party. The video portrays complex social interactions, 
including instances of friendship, dating, conflicts, and mis
understandings. Throughout the video, viewers are exposed to a variety 
of social cues including facial expressions, body language, verbal con
tent, and prosody. The characters display a range of emotions and in
tentions, from subtle to more overt, creating a rich tapestry of social 
scenarios. The interactions between characters vary in complexity, 
sometimes involving dyadic exchanges and at other times more complex 
group dynamics.

When conducting the test, the video is paused multiple times at 
selected points. At each pause, a question is posed about the characters’ 
feelings, thoughts, or intentions. These in total 45 questions cover 
different mental state modalities, including emotions, thoughts, and 
intentions, with varying valence (positive, negative, and neutral). The 
test incorporates classical social cognition concepts such as first and 
second-order false beliefs, faux pas, metaphor, sarcasm, and irony. Each 
item of the MASC is presented in form of a question with a multiple- 
choice answer format with four options. These options are designed to 
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differentiate between correct mental state inferences and three types of 
incorrect ones: hyper-mentalizing (representing an over-attribution of 
mental states beyond what is warranted), hypo-mentalizing (indicating 
an under-attribution or failure to fully consider mental states), and non- 
mentalizing (reflecting a complete lack of consideration or failure to 
recognize mental states). These error types relate to specific social- 
cognitive deficits in different clinical populations.

In addition to the main questions, the MASC includes several control 
questions. These questions assess basic comprehension of the plot and 
non-social aspects of the scenes, ensuring that respondents (or in this 
case, GAI models) are adequately processing and retaining the content.

Scoring involves assigning one point for correct responses and zero 
points for incorrect ones. This allows for the derivation of an overall 
score (maximum 45 points) as well as scores for the different types of 
mental state inference errors.

2.2. Comparison data

We based our comparisons on data from a doctoral dissertation by 
McLaren (2023). These data comprised MASC assessments of 1230 un
dergraduate students (ages 18–25 years, 81 % female) from a large 
southwestern United States public university, representing diverse 
ethnic backgrounds: 316 non-Hispanic White, 414 Hispanic White, 151 
Black/African American, and 349 Asian/Pacific Islander. Participants 
were required to have sufficient English fluency and complete all study 
materials. The mean MASC score of the 1230 participants was 33.19 
with a standard deviation (SD) of 5.79. In addition to the overall MASC 
score, McLaren’s (2023) provides a detailed analysis of the types of er
rors made by the human participants, categorized according to the 
MASC scoring guidelines into hyper-mentalizing, hypo-mentalizing, and 
non-mentalizing errors. This error data was originally presented as 
means and standard deviations for each error type within the specific 
racial/ethnic subgroups studied (Non-Hispanic White, Hispanic White, 
Black/African American, Asian/Pacific Islander; see Table 2 in McLaren, 
2023). For the purpose of direct comparison with the GAI model in the 
current study, we calculated the overall distribution of error types across 
the entire human sample (N = 1230) using weighted averages based on 
the subgroup sizes and means reported. This yielded an average profile 
of approximately 5.67 hyper-mentalizing errors (representing 47.0 % of 
total human errors), 4.20 hypo-mentalizing errors (34.8 % of total 
human errors), and 2.21 non-mentalizing errors (18.3 % of total human 
errors) for the human normative sample.

2.3. Generative artificial intelligence tool

This study applied as state-of-the-art LLM Google’s Gemini 1.5 Pro 
(Google DeepMind, 2024a). As of 01–09-2024, Gemini 1.5 Pro was 
Google’s most capable general freely accessible model, featuring 
multimodal processing capabilities for text, images, audio, and video. As 
compared to its predecessors, it exhibits improved performance across 
various tasks, enhanced logical reasoning abilities, and improved factual 
accuracy, with a context window of up to 2 million tokens (Google 
DeepMind, 2024b). We accessed the model through the Google AI studio 
– developer environment (Google DeepMind, 2024c), applying its 
default configuration, except for the temperature setting, which we 
varied as part of our experimental design. Temperature in AI models 
control the randomness of outputs, with lower values producing more 
deterministic responses and higher values increasing variability. We did 
not fine-tune or further train the model for this specific task, as our goal 
was to assess its out-of-the-box performance on the MASC. The model’s 
responses were generated in real-time during the test administration, 
without any post-processing or manual intervention.

2.4. Verification of Model’s naivety to MASC materials

Given the critical importance of ensuring that the AI model’s 

performance reflects genuine social-cognitive processing rather than 
retrieval of previously learned test-specific information, we undertook 
several steps to verify, as best as possible, Gemini 1.5 Pro’s naivety 
concerning the MASC materials. This verification is particularly perti
nent as the MASC is not an open-source test but is distributed exclusively 
to researchers under controlled licensing agreements.

First, we reviewed Google’s publicly stated policies regarding 
training data for its large language models. Google’s documentation 
indicates that its training corpora are restricted to data that are either 
publicly available online or data for which explicit permission has been 
granted by the owner (Google, 2023; Google Cloud, n.d.-a, n.d.-b). As 
the MASC materials do not meet these criteria, their inclusion in the 
model’s training data is highly unlikely, aligning with methodological 
considerations applied in similar GAI assessment research (e.g., Kramer, 
2025).

Second, beyond relying on stated policies, we conducted direct 
empirical probes to assess the model’s potential prior knowledge of the 
MASC materials, framing questions to require specific identification of 
the test rather than analysis of its content. In separate interactions, 
without re-presenting the video stimulus in this context, we queried the 
Gemini 1.5 Pro model regarding its ability to: (i) identify the specific 
assessment tool (MASC) or the source from which the previously 
analyzed video originates, (ii) provide the list of specific multiple-choice 
questions associated with that assessment, and (iii) generate the corre
sponding correct answers for those questions. Across all these probes, 
the model consistently failed to provide accurate or specific information 
that would indicate prior exposure to, or recognition of, the MASC test 
materials or its specific components.

Furthermore, if the model had been explicitly trained on the MASC 
questions and their correct answers, performance approaching perfec
tion (i.e., 45/45 correct responses) would be anticipated. However, as 
detailed in the Results section, the observed performance, while signif
icantly above chance and human average, consistently included errors 
across all temperature conditions (scores ranged from 36 to 40 out of 
45). This imperfection further diminishes the likelihood of direct 
training data contamination being a primary driver of the model’s 
performance.

Taken together, while absolute certainty regarding the exclusion of 
specific data from vast training corpora remains challenging, these 
converging lines of evidence—the MASC’s controlled distribution, 
Google’s stated data policies, the model’s demonstrated lack of recog
nition in direct probes, and the non-perfect accuracy observ
ed—substantially mitigate the concern that the model’s performance on 
the MASC was confounded by prior exposure to the test materials. This 
verification process supports the interpretation of the model’s perfor
mance as reflecting its intrinsic social-cognitive processing capabilities 
when presented with novel, dynamic audiovisual social stimuli.

2.5. Procedure

We administered the MASC to the model twice under each of the 
three temperature conditions: 0, 0.5 and 1, resulting in a total of 6 runs. 
For each administration, we directly uploaded the MASC video to the 
Gemini 1.5 Pro model, allowing it to process the actual audiovisual 
content instead of transcriptions or descriptions. This approach ensured 
that the model had access to all visual and auditory cues present in the 
original test material. Each administration of the test was conducted in a 
single, continuous conversation thread, mimicking the flow of human 
test-taking. This approach ensured that the model maintained context 
throughout the test, similar to how a human participant would experi
ence the assessment. The model was presented with the video content 
and accompanying multiple-choice questions at each pause point, 
prompting it to select the most appropriate answer from the four options 
provided. A screenshot of the Gemini 1.5 pro interface is shown in Fig. 1.
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2.6. Statistical analysis

We conducted the statistical analyses as follows: (1) We applied 
binomial tests for each of the six model evaluations to determine if 
performances differed significantly from chance (p = .25), calculating 
exact Clopper-Pearson 95 % confidence intervals (CIs) for the observed 
proportions. We applied a Bonferroni correction for multiple compari
sons (adjusted α ̃ .008) to control the familywise error rate. (2) Effect 
sizes for comparison with chance level were calculated using Cohen’s h 
(Cohen, 1988) and Risk Difference (Newcombe, 2006). Corresponding 
95 % CIs for these effect sizes were derived from the Clopper-Pearson CIs 
of the proportions. (3) Percentile rankings were calculated for each run 
relative to the human normative sample (N = 1230; M = 33.19, SD =
5.79; McLaren, 2023) to contextualize the model’s performance. (4) A 
z-test was performed comparing the average score of the model’s six 
evaluations to the human sample mean to assess statistical significance 
of the overall difference. (5) A Mann-Whitney U test was additionally 
conducted comparing the model’s six scores to the human sample dis
tribution as a robust non-parametric verification. (6) To quantify the 
magnitude of the difference between the AI and human samples, Glass’s 
Δ (Glass et al., 1981) and Hedges’ g)Hedges, 1981) were calculated. 
Glass’s Δ was selected due to the disparity in variances, using the human 
sample SD for standardization, while Hedges’ g provides a bias-corrected 
estimate based on the pooled standard deviation. 95 % CIs for both 
Glass’s Δ and Hedges’ g were computed based on the non-central 
t-distribution. (7) Model response consistency between the two runs at 
each temperature setting was assessed using Cohen’s Kappa (κ) and its 
95 % CI (Cohen, 1960). (8) The percentage distribution of GAI error 

types (hyper-, hypo-, and non-mentalizing) across the six evaluations 
was calculated and compared via a Chi-Square Goodness-of-Fit test (χ2) 
to the expected distribution derived from the human normative error 
profile (McLaren, 2023). All primary statistical tests used a significance 
level of p < .05 (two-tailed), except where Bonferroni correction was 
applied. Effect size calculations and associated confidence intervals 
were primarily performed in R (version 4.2.2; R Core Team, 2022), 
while basic tests were conducted using SPSS (version 29).

3. Results

3.1. Performance

Binomial tests indicated that the performance of Gemini 1.5 Pro on 

Fig. 1. Interface of the Gemini 1.5 Pro model used during the administration of the MASC test, showcasing the interaction window and selected temperature setting.

Table 1 
Binomial test results for MASC performance comparison between gemini 1.5 pro 
and chance level (with bonferroni correction).

Run Score Proportion 95 % CI 
[Proportion]

p-value

Temperature 0, Run 1 39 0.87 0.73 0.94 <0.001a

Temperature 0, Run 2 37 0.82 0.68 0.92 <0.001a

Temperature 0.5, Run 1 39 0.87 0.73 0.94 <0.001a

Temperature 0.5, Run 2 40 0.89 0.76 0.96 <0.001a

Temperature 1, Run 1 36 0.80 0.65 0.90 <0.001a

Temperature 1, Run 2 40 0.89 0.76 0.96 <0.001a

Note. CI = Confidence Interval.
a p < .05 after Bonferroni correction for multiple comparisons.
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the MASC was significantly better than chance guessing (p = .25) across 
all six evaluations (all corrected ps < 0.001; see Table 1). Exact 95 % 
confidence intervals (CIs) for the proportion correct were calculated 
using the Clopper-Pearson method (see Table 1). All results remained 
statistically significant after applying Bonferroni correction for multiple 
comparisons (adjusted α ̃ .008).

Gemini 1.5 Pro’s performance on the MASC varied across different 
temperatures (see Fig. 2). At a temperature of 0, the model achieved 
scores of 39 and 37 out of 45, positioning it at the 84th and 74th per
centiles of the human normative sample, equivalent to 0.87 and 0.66 SDs 
above the human normative sample mean. When the temperature was 
set to 0.5, the model achieved scores of 39 and 40 out of 45, positioning 
it at the 84th and 88th percentiles (0.87 and 1.17 SDs above the human 
normative sample mean). At a temperature of 1, the model achieved 
scores of 36 and 40 out of 45, positioning it at the 69th and 88th per
centiles (0.48 and 1.17 SDs above the human normative sample mean). 
In all conditions, the LLM correctly answered all control questions, 
indicating accurate processing of the video content.

We calculated standardized and absolute effect size metrics with 95 
% CIs to quantify the magnitude of the model’s performance relative to 
chance level (p = .25; see Table 2). Cohen’s h ranged from 1.17 to 1.42 
across conditions, indicating very large effects (Cohen, 1988) substan
tially exceeding conventional thresholds. Risk differences ranged from 
55.0 % to 63.9 % above chance, demonstrating substantial practical 
significance (Newcombe, 2006). Corresponding 95 % CIs for these effect 
sizes are presented in Table 2.

Comparison of the aggregated AI performance (M = 38.50, SD =
1.64) to the human normative sample (M = 33.19, SD = 5.79) revealed a 
statistically significant difference (Z = 2.24, p = .025), confirmed by a 
Mann-Whitney test (U = 1398.0, p = .009). Effect size analyses indicated 
that the AI model significantly outperformed the human sample average 
(see Table 3). Specifically, Glass’s Δ was 0.92 (95 % CI [0.11, 1.72]), 
utilizing the human sample’s standard deviation, and Hedges’ g was 
0.92 (95 % CI [0.12, 1.72]), using the pooled standard deviation with 
small-sample correction. Both measures represent large effect sizes.

Analysis of response consistency between the model’s two runs at 
each temperature setting revealed almost perfect agreement, as indi
cated by Cohen’s Kappa values ranging from κ = 0.82 to 0.85 (all ps <
0.001). The 95 % confidence intervals further supported substantial to 
almost perfect agreement across conditions (see Table 4). This indicates 
a high level of reliability in the model’s performance between evalua
tions, largely independent of the temperature setting.

3.2. Assessment of errors

The analysis of errors provided insight into the performance short
comings observed in the Gemini 1.5 Pro model (see Fig. 3). The distri
bution of errors across all 6 evaluations was as follows: 41.0 % of the 
errors involved hyper mentalizing, indicating instances where the model 
attributed more mental states to characters than warranted. 46.2 % of 
the errors involved hypo mentalizing, indicating instances where the 
model attributed fewer mental states than necessary. And 12.8 % of the 
errors involved non-mentalizing, indicating instances where the model 
failed to recognize or interpret mental states.

Table 2 
Effect sizes for MASC performance comparison between gemini 1.5 pro and 
chance level (p = .25).

Run Cohen’s 
h

95 % CI [h] Risk 
Difference 
(%)

95 % CI [RD]

Temperature 0, 
Run 1

1.35 1.01 1.64 61.70 48.20 69.90

Temperature 0, 
Run 2

1.22 0.89 1.52 57.20 42.90 67.00

Temperature 0.5, 
Run 1

1.35 1.01 1.64 61.70 48.20 69.90

Temperature 0.5, 
Run 2

1.42 1.07 1.71 63.90 50.90 71.30

Temperature 1, 
Run 1

1.17 0.84 1.47 55.00 40.40 65.40

Temperature 1, 
Run 2

1.42 1.07 1.71 63.90 50.90 71.30

Note. CI = Confidence Interval; RD = Risk Difference (Proportion Correct - 
0.25). Risk Difference reported as percentage points above chance. a Confidence 
intervals derived from the 95 % CI of the proportion correct (Clopper-Pearson 
method).

Fig. 2. Heatmap, showing the performance percentiles of the Gemini 1.5 Pro 
model on the MASC at three temperatures (0, 0.5, 1) and two assessment runs. 
Abbreviations: LLM, Large Language Model; MASC, Movie for the Assessment of 
Social Cognition.

Table 3 
Effect sizes for MASC performance comparison between gemini 1.5 pro (N = 6) 
and human sample (N = 1230).

Effect Size 
Measure

AI Mean (SD) Human Mean 
(SD)

Estimate 95 % CI

Glass’s Δ 38.50 (1.64) 33.19 (5.79) 0.92 0.11 1.72
Hedges’ g 38.50 (1.64) 33.19 (5.79) 0.92 0.12 1.72

Note. CI = Confidence Interval. Glass’s Δ uses the Human sample standard de
viation for standardization. Hedges’ g uses the pooled standard deviation 
(5.779) and includes a small-sample bias correction.

Table 4 
Inter-run agreement (Cohen’s kappa) for gemini 1.5 pro responses.

Temperature Setting Cohen’s κ 95 % CI [κ]

0 0.82 0.68 0.95
0.5 0.82 0.69 0.95
1 0.85 0.73 0.97

Note. CI = Confidence Interval; κ = Kappa. Agreement calculated between Run 1 
and Run 2 for each temperature setting.
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3.3. Comparison of GAI and human error patterns

The GAI’s error distribution and the human normative sample are 
presented in Table 5. Representative examples from the model’s output, 
illustrating each error type (hyper-mentalizing, hypo-mentalizing, and 
non-mentalizing), are presented in Appendix A. A Chi-Square Goodness- 
of-Fit test was performed on the observed GAI error frequencies to 
evaluate whether the overall distribution profiles differed significantly. 
The test did not yield a statistically significant result χ2(2, N¼39) ¼
2.36, p ¼ .307, indicating that the overall GAI error distribution profile 
did not significantly deviate from the expected distribution based on the 
human normative pattern.

4. Discussion

The present study evaluated the performance of an advanced GAI 
system, Gemini 1.5 Pro, on the MASC, a naturalistic assessment of 
mentalizing abilities using dynamic audiovisual stimuli. Binomial tests 
indicated that Gemini 1.5 Pro’s performances were significantly better 
than chance across all conditions (all corrected ps < 0.001; see Table 1). 
Large effect sizes were observed when comparing performance to 
chance level (Cohen’s h range = 1.17–1.42; Risk Difference range =
55.0 %–63.9 % above chance; 95 % see Table 2), indicating very large 
practical significance. Furthermore, Gemini surpassed average human 
performance across the applied temperature settings. The model’s 
highest scores were achieved at temperatures 0.5 and 1, placing its 
performances between the 69th and 88th percentiles of a human 

normative sample. These results indicate its profound capabilities in 
complex social-emotional interpretation tasks, potentially exceeding 
typical human performance levels and demonstrating high response 
reliability across repeated evaluations (κ range = 0.82-0.85; see 
Table 4).

These findings extend our understanding of GAI’s social cognitive 
capabilities, particularly in complex multimodal processing and theory 
of mind (ToM). While previous research has demonstrated GAI’s profi
ciency in text-based emotional awareness tasks such as the LEAS 
(Elyoseph et al., 2023, 2024; Hadar-Shoval et al., 2023) and 
image-based emotion recognition tests like the RMET (Elyoseph, Refoua, 
et al., 2024), this study demonstrates GAI’s ability to interpret complex 
social-emotional cues in dynamic, multimodal scenarios approximating 
real-life interactions. Our findings reveal high performance levels on the 
MASC, aligning with recent ToM tests (Moghaddam & Honey, 2023; 
Strachan et al., 2024) and emotion recognition tasks (Elyoseph, Refoua, 
et al., 2024; Refoua et al., 2024). The magnitude of GAI’s performance 
advantage over the human normative sample represents a large effect 
size (Glass’s Δ = 0.92, 95 % CI [0.11, 1.72]; Hedges’ g = 0.92, 95 % CI 
[0.12, 1.72]; see Table 3). An analysis of the pattern of errors was also 
conducted to provide additional context. A Chi-Square Goodness-of-Fit 
test comparing the overall GAI and human error distributions did not 
yield a statistically significant difference indicating that the GAI’s 
overall error profile does not significantly deviates from the human 
normative pattern. However, it is important to consider that high LLM 
accuracy can sometimes mask fundamental divergences from human 
reasoning processes (Sap, 2023; Shapira et al., 2023; Ullman, 2023). 
Therefore, continued investigation into potential underlying mecha
nistic differences, possibly reflected in more subtle or task-specific error 
tendencies, remains a pertinent avenue for future research.

4.1. Strengths

Our study has several strengths. First, we utilized a standardized, 
video-based assessment tool (the MASC) that closely mimics real-life 
social interactions. This approach provides a more ecologically valid 

Fig. 3. Pie chart illustrates the distribution of Mentalizing errors made by the Gemini 1.5 Pro model. The errors are categorized into three types: hyper-mentalizing, 
hypo-mentalizing, and non-mentalizing. Abbreviations: Theory of Mind, TOM.

Table 5 
Comparison of Error Type Distributions in GAI vs. Human Normative Sample.

Error Type GAI Model (%) Human Normative Sample (%)

Hyper-mentalizing 41.0 47.0
Hypo-mentalizing 46.2 34.8
Non-mentalizing 12.8 18.3

Note: Human percentages are weighted averages derived from McLaren (2023).
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measure of social cognition compared to text-based or static image as
sessments, offering insights into the GAI’s performance in interpreting 
dynamic, multimodal social cues. Second, the MASC is not an open- 
source test, meaning the GAI model (Gemini 1.5 Pro) was not trained 
on this specific dataset. This characteristic enhances the validity of our 
results, as it minimizes the likelihood of the model having had prior 
exposure to the test material. Third, our study employed real-life large 
data collected from human participants as a comparison benchmark. 
This approach allowed for a direct and meaningful comparison between 
the GAI’s performance and actual human subjects, providing a realistic 
context for interpreting the model’s capabilities in social cognition 
tasks. Fourth, our study utilized Gemini 1.5 Pro, an easily available and 
commonly used GAI tool. This choice enhanced the practical applica
bility of our findings, as the study demonstrated the capabilities of an 
accessible AI system without requiring specialized or custom-developed 
solutions. This aspect increases the potential for immediate real-world 
applications and facilitates easier replication and extension of our 
research by other investigators.

4.2. Limitations

However, our study also has several limitations. First, the use of 
combined video and audio input modalities limits our understanding of 
the model’s performance with isolated sensory information. This 
approach may not fully reveal the relative importance of visual versus 
auditory cues in the GAI’s social cognition capabilities. Second, 
although the MASC assessment materials are distributed under 
controlled licensing and are not publicly available, minimizing the 
likelihood of their inclusion in the model’s training data according to 
stated policies (Google, 2023; Google Cloud, n. d.-a, n. d.-b), the pos
sibility of prior exposure cannot be entirely dismissed. We undertook 
specific verification steps to address this potential confound, including 
direct empirical probing of the model’s recognition and analysis of its 
performance patterns. These mitigation steps and their outcomes, which 
suggest the model was indeed naive to the MASC materials, are detailed 
further in the Methods (see Section 2.4). Third, according to its de
mographic characteristics, our human comparison sample (McLaren, 
2023) is not fully representative of the general population in the US or 
beyond. As our comparison sample consisted of university students, it is 
most likely that this sample exhibited above-average performance in 
emotion recognition tasks. University student populations typically 
demonstrate higher performance on cognitive tasks compared to general 
population samples, potentially due to selective educational factors, 
developmental stage advantages, and cognitive practice effects associ
ated with academic engagement (Henrich et al., 2010). Specifically 
within social cognition research, educational attainment has been 
positively associated with theory of mind performance (Tenenberg & 
Knobelsdorf, 2014), suggesting our comparison sample may represent 
an elevated benchmark relative to broader population norms. These 
sampling considerations introduce important contextual parameters for 
interpreting the comparative positioning of AI performance within the 
spectrum of human social-cognitive capabilities. Yet, the observation 
that our GAI model still outperformed this sample – that is expected to 
perform above-average – indicates an even more pronounced superiority 
of the GAI as compared to human average. Still, future studies with more 
diverse and representative human comparison samples are warranted to 
establish fine-grained performance profiles across various demographic 
segments, including different age cohorts, educational backgrounds, and 
sociocultural contexts, thereby providing a more comprehensive 
framework for situating artificial social intelligence within the full 
spectrum of human capabilities The fourth limitation of this study lies in 
its assessment of GAI systems’ social cognitive abilities solely through 
observational third-person perspectives, rather than through direct 
human-AI interactions. This methodological constraint is particularly 
relevant given that practical applications, especially for individuals with 
social cognitive impairments, typically involve direct interpersonal 

engagement. Recent empirical evidence substantiates the significance of 
this methodological consideration, as demonstrated by Yin et al. (2024)
in their investigation of human-AI interactions in emotional support 
contexts. Their findings reveal a noteworthy paradox: while 
AI-generated responses surpassed human-generated messages in making 
recipients feel heard and demonstrated superior emotional detection 
capabilities, recipients’ subjective sense of being understood signifi
cantly diminished upon learning of the AI source. This phenomenon 
further underscores the critical importance of examining GAI perfor
mance within authentic interpersonal contexts, particularly when 
considering therapeutic applications. Fifth, most existing tests, such as 
the LEAS (Lane et al., 1990), RME (Baron-Cohen et al., 2001), and MASC 
(Dziobek et al., 2006). Were originally designed to identify clinically 
relevant impairments in social cognition capacities with clinical sam
ples. Moreover, the multiple-choice format of these tests, while enabling 
standardized assessment, may not adequately capture the complexity of 
mental state inference abilities (Oakley et al., 2016; Quesque & Rossetti, 
2020). Selecting one out of several given answers allows for pattern 
recognition strategies rather than demonstrating a genuine under
standing of mental states, suggesting that complex social cognition in 
GAIs should be further tested with ecological open-answer formats. This 
includes examining the GAI’s performance across different languages 
and cultural variations in social behavior, as the current study was 
limited to stimulus material from a single cultural context. Finally, the 
statistical comparison of error patterns, while descriptively suggestive of 
differences, did not yield a significant result (p = .307) and relied on 
estimated GAI error counts, potentially limiting the strength of conclu
sions drawn from this specific analysis due to factors like statistical 
power.

4.3. Critical considerations

While our findings, along with other recent studies, demonstrate GAI 
models’ proficiency in mentalization and social cognition tasks, it is 
imperative to acknowledge that these systems process and interpret 
social information through fundamentally different mechanisms than 
humans, mechanisms that remain largely unknown to our current un
derstanding. The descriptive nature of our results, while valuable, ne
cessitates caution against anthropomorphizing GAI’s performance in 
social-cognitive tasks, among researchers, clinicians, and the general 
public (Pelau et al., 2021). This cautionary stance is theoretically 
grounded in fundamental differences between human and artificial so
cial cognition. Human mindreading, as Gallese (2007) demonstrates, 
cannot be reduced to purely computational processes in dedicated brain 
modules. Instead, it emerges from an embodied simulation system, 
fundamentally rooted in the premotor cortex and mirror neuron system, 
which enables direct experiential understanding of others’ actions and 
intentions.

While standardized instruments like the MASC provide valuable in
sights, they capture only a subset of the complex abilities required for 
authentic social understanding. The distinction between successfully 
completing pre-determined multiple-choice tasks and demonstrating 
genuine social comprehension in fluid, contextual situations remain 
substantial. This consideration becomes especially critical in clinical 
applications, where misinterpreting social cues or mental states could 
significantly affect patient care and outcomes. Extensive research, 
including clinical trials, would be necessary to establish GAIs efficacy 
and safety. One significant concern is that while GAI can foster trust and 
build rapport with users, it could become a potent instrument in the 
hands of entities that may prioritize economic gains over genuine sup
port and care (Elyoseph, Refoua, et al., 2024). The risk is particularly 
acute if GAI systems will intrusively analyze personal conversations, 
behaviors, and emotions without explicit user consent (Coghlan et al., 
2023). Furthermore, any development in this area must prioritize user 
autonomy, privacy concerns, and the diverse preferences within the 
targeted communities. Mental health professionals and developers must 
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be vigilant against the influence of epistemic bias in their practice, 
striking a balance between using GenAI tools and retaining the essential 
human elements of empathy, intuition, and clinical judgment (Rubin 
et al., 2024). Additionally, developers and practitioners must consider 
the risk that people in emotional need may become dependent on or 
attached to GenAIs in potentially nonadaptive ways, particularly as 
these systems are designed to foster trust and emotional connection 
(Munn & Weijers, 2023). This raises fundamental questions about the 
authenticity of human-AI therapeutic relationships and their potential 
impact on mental well-being.

4.4. Future directions

Future research in this field should pursue several key directions to 
further our understanding of GAI’s capabilities in social cognition and its 
potential applications in real-world settings. First, studies should pri
marily focus on assessing the GAI’s performance using only video input. 
This approach would help disentangle the relevance of visual cues and 
auditory cues for the model’s social cognition abilities. Future research 
may explore the opportunities and risks associated with integrating such 
GAI models into real-world IoB systems. Such studies would assess their 
performance in dynamic, uncontrolled environments, providing insights 
into the practical applicability of these technologies. Additionally, 
research into enhancing the transparency and interpretability of these 
GAI systems will be crucial for their responsible implementation. This 
line of inquiry could focus on developing and applying methods to 
explain the GAI’s decision-making processes in social cognition tasks, 
which is expected to be essential for building trust and ensuring ethical 
use in sensitive applications such as mental health support or social skills 
training.

Longitudinal studies examining the long-term effects of interaction 
with socially intelligent GAI on human behavior and social skills may 
provide valuable insights. These studies could explore how prolonged 
exposure to GAI systems with advanced social cognition capabilities 
might influence human social development, particularly in vulnerable 
populations or those with social cognitive difficulties. In addition, cross- 
cultural studies would allow evaluating GAI’s performance across 
different languages and cultural contexts, informing about potential 
cultural biases requiring to be addressed in future developments. 
Overall, interdisciplinary collaborations between GAI researchers, psy
chologists, ethicists, and healthcare professionals may facilitate 
exploring these technologies’ potential applications and implications in 
various domains, particularly in mental health and social support 
services.

As future research provides greater insight into GAI’s social- 
cognitive capabilities, integrating it with emerging technologies could 
be a promising avenue for investigation. For example, in smart city 
environments, GAI with advanced social cognition could enhance public 
services by better-interpreting citizen needs and behaviors. This capa
bility aligns closely with the emerging field of IoB. In mental health 
contexts, the integration of GAI systems capable of advanced social 
cognition with IoB tools could lead to more nuanced and personalized 
interventions. More specifically, such GAI enhanced IoB devices could 
be beneficial for individuals with conditions characterized by difficulties 
in emotional recognition and social interaction, such as autism spectrum 
disorders (ASD) or alexithymia. The technology’s capability to analyze 
complex social cues and emotional expressions could potentially support 
and assist subjects suffering from related impairments. Thereby, in the 
near or mid-term future, GAI systems could facilitate the creation of 
personalized tools for emotional recognition training, social skills 
development, and real-time support in social situations. Another field of 
application may be psychotherapy training, where GAI could assist in 
analyzing video recordings of therapy sessions, offering insights into 
therapist interventions and client emotional responses (Fiske et al., 
2019; Luyten et al., 2020). This application may contribute to improving 
the quality of clinical supervision and supporting therapists’ skill 

development. For example, the technology could provide detailed 
feedback on therapist-client interactions, help identify patterns in 
therapeutic approaches, and potentially suggest areas for improvement 
in therapeutic techniques.

4.5. Conclusions

In conclusion, results from our study represent a significant 
advancement in our understanding of advanced GAI’s capabilities in 
complex social-emotional reasoning. The performance of the GAI under 
study on the MASC demonstrated a level of social cognitive performance 
that is in par or even exceeds average human capabilities in certain 
aspects. These findings indicate relevant opportunities for applications 
in mental health care, social skills training, and assistive technologies. 
However, the yet open question whether this study indicates the next 
frontier of mindreading in GAI should be further investigated. Our work 
underscores the need for continued research to fully understand the 
mechanisms, implications and limitations of these abilities, as well as 
the ethical considerations that must guide their responsible develop
ment and application in real-world settings.
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Appendix A. Examples of GAI Mentalizing Errors on the MASC

A.1. Example: Hypo-mentalizing Error

• Context: A character encounters another character’s unexpected 
dog, prompting a question about the character’s feelings.

• Error Description: The correct inference identifies a specific nega
tive emotion. The AI’s interpretation, however, focused primarily on 
the element of surprise, reasoning that the character’s reaction ("His 
facial expression and the way he sort of jumps back a bit") primarily 
suggested he "wasn’t expecting a dog to be there". By emphasizing 
only the unexpectedness based on these cues, the AI potentially 
overlooked or under-represented the intensity or specific nature of 
the character’s likely primary emotional reaction. This under- 
attribution reflects a Hypo-mentalizing error.
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A.2. Example: Non-mentalizing Error

• Context: Following a provocative remark by one character during 
cooking preparations, another character responds by assigning the 
first character a specific kitchen task. The question probes the 
responding character’s intention.

• Error Description: The correct inference centers on the responding 
character’s internal motivation, specifically a desire for social 
payback or an emotional reaction to the initial remark. The AI’s 
interpretation acknowledged the context of the "sexist comment" and 
recognized the character might be "enjoying this little bit of payback" 
due to a "sly smile", yet its final assessment ultimately prioritized the 
literal behavioral outcome of "get[ting] him involved in the cooking 
process". This failure to prioritize the inferred mental state (moti
vation/payback) over the behavioral action, despite identifying it 
during reasoning, represents a Non-mentalizing error.

A.3. Example: Hyper-mentalizing Error

• Context: During a phone call discussing a social arrangement, one 
character expresses reluctance, which seems potentially linked to 
another character expected to be involved. The question probes the 
speaker’s feelings.

• Error Description: The correct inference describes a relatively 
straightforward feeling of reluctance about the arrangement. The 
AI’s interpretation, however, attributed more complex negative 
interpersonal states, reasoning that the character seemed "a bit 
exasperated" due to perceived "manipulation" by the caller and 
because the character anticipated annoyance ("already knows that 
the other character can be annoying"). This extensive inference of 
intricate negative states and interpersonal dynamics beyond what 
was clearly warranted by the immediate interaction exemplifies a 
Hyper-mentalizing error.

Data availability

Data will be made available on request.
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