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ABSTRACT 
People employ expressive behaviors to efectively communicate 
and coordinate their actions with others, such as nodding to ac-
knowledge a person glancing at them or saying “excuse me” to pass 
people in a busy corridor. We would like robots to also demon-
strate expressive behaviors in human-robot interaction. Prior work 
proposes rule-based methods that struggle to scale to new commu-
nication modalities or social situations, while data-driven methods 
require specialized datasets for each social situation the robot is 
used in. We propose to leverage the rich social context available 
from large language models (LLMs) and their ability to generate mo-
tion based on instructions or user preferences, to generate expressive 
robot motion that is adaptable and composable, building upon each 
other. Our approach utilizes few-shot chain-of-thought prompting 
to translate human language instructions into parametrized con-
trol code using the robot’s available and learned skills. Through 
user studies and simulation experiments, we demonstrate that our 
approach produces behaviors that users found to be competent 
and easy to understand. Supplementary material can be found at 
https://generative-expressive-motion.github.io/. 

CCS CONCEPTS 
• Computing methodologies → Online learning settings. 

KEYWORDS 
Generative expressive robot behaviors, in-context learning, lan-
guage corrections 
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Look at human Nod Turn green lights on

Language instructions

time

Acknowledge a person walking by. 
You cannot speak.

 def acknowledge_person_walking_by():
   human_location = find_human()
   look_at(human_location)
   move_head(direction=down)
   time.sleep(1.0)
   move_head(direction=up)
   change_light(color=green)

Robot expressive behavior

It is polite to acknowledge a person by 
glancing at them, nodding, and saying hello.

As the robot cannot speak, it can use its head 
to nod and light strip to display friendly colors.

Generative Expressive Motion (GenEM)

Code generation

Human expressive behavior

Figure 1: We present Generative Expressive Motion (GenEM), 
a new approach to autonomously generate expressive robot 
behaviors. GenEM takes a desired expressive behavior (or a 
social context) as language instructions, reasons about hu-
man social norms, and generates control code for a robot 
using pre-existing robot skills and learned expressive be-
haviors. Iterative feedback can quickly modify the behavior 
according to user preferences. Here, the * symbols denote 
frozen large language models. 

Interaction (HRI ’24), March 11–14, 2024, Boulder, CO, USA. ACM, New York, 
NY, USA, 10 pages. https://doi.org/10.1145/3610977.3634999 

1 INTRODUCTION 
People employ a wide range of expressive behaviors to efectively 
interact with others on a daily basis. For instance, a person walking 
by an acquaintance may briefy glance at them and nod to acknowl-
edge their presence. A person might apologetically say, “excuse me!” 
to squeeze through a tight hallway, where a group of people are 
conversing. In much the same manner, we would like robots to also 
demonstrate expressive behaviors when interacting with people. 
Robots that don’t have expressive capabilities will need to re-plan 
their paths to avoid the crowded hallway. On the other hand, robots 
that have expressive capabilities might actually be able to persuade 
the group of people to make room for them to squeeze by, thereby 
improving the robot’s efciency in getting its job done. 

Prior work has demonstrated the value of expressive robot behav-
iors, and explored approaches for generating behaviors for various 
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purposes and contexts, including general-purpose use [8], manipu-
lation settings, where transparency is important [21], and everyday 
scenarios where social norms must be observed (such as interacting 
with a receptionist) [36]. Approaches can be rule- or template-
based [2, 7, 33], which often rely on a rigid template or a set of 
rules to generate behaviors. This often leads to robot behaviors that 
can be expressive, but do not scale to new modalities or variations 
of human preferences. On the other hand, data-driven techniques 
ofer the promise of fexibility and the ability to adapt to varia-
tions. Prior work have studied data-driven techniques that generate 
expressive motion [42], but these methods also have their short-
comings as they often need specialized datasets for each social 
interaction where a particular behavior is used (e.g., for afective 
robot movements [41, 42]). 

Our goal is to enable robots to generate expressive behavior that 
is fexible: behaviors that can adapt to diferent human preferences, 
and be composed of simpler behaviors. Recent work show that large 
language models (LLMs) can synthesize code to control virtual [44] 
and embodied agents [25, 39], help design reward functions [22, 
48], enable social and common-sense reasoning [20], or perform 
control and sequential decision making tasks through in-context 
learning [10, 29, 30] by providing a sequence of desirable inputs, and 
outputs in the prompt. Our key insight is to tap into the rich social 
context available from LLMs to generate adaptable and composable 
expressive behavior. For instance, an LLM has enough context 
to realize that it is polite to make an eye contact when greeting 
someone. In addition, LLMs enable the use of corrective language 
such as “bend your arm a bit more!” and the ability to generate 
motion in response to such instructions. This makes LLMs a useful 
framework for autonomously generating expressive behavior that 
fexibly respond to and learn from human feedback in human-robot 
interaction settings. 

Leveraging the power and fexibility provided by LLMs, we pro-
pose a new approach, Generative Expressive Motion (GenEM), for 
autonomously generating expressive robot behaviors. GenEM uses 
few-shot prompting and takes a desired expressive behavior (or a 
social context) as language instructions, performs social reason-
ing (akin to chain-of-thought [45]), and fnally generates control 
code for a robot using available robot APIs. GenEM can produce 
multimodal behaviors that utilize the robot’s available afordances 
(e.g., speech, body movement, and other visual features such as 
light strips) to efectively express the robot’s intent. One of the 
key benefts of GenEM is that it responds to live human feedback 
– adapting to iterative corrections and generating new expressive 
behaviors by composing the existing ones. 

In a set of online user studies, we compared behaviors generated 
on a mobile robot using two variations of GenEM, with and without 
user feedback (a non-expert in HRI behavior design), to a set of 
behaviors designed by a professional character animator (or the 
oracle animator). We show that behaviors generated by GenEM and 
further adapted with user feedback were positively perceived by 
users, and in some cases better perceived than the oracle behaviors. 

In additional experiments with the mobile robot and a simu-
lated quadruped, we show that GenEM: (1) performs better than 
a version where language instructions are directly translated into 
code, (2) allows for the generation of behaviors that are agnostic to 
embodiment, (3) allows for the generation of composable behaviors 

that build on simpler expressive behaviors, and fnally, (4) adapt to 
diferent types of user feedback. 

2 RELATED WORK 
Expressive Behavior Generation. Researchers have made signif-
icant eforts towards generating socially acceptable behavior for 
both robots and virtual humans. These can largely categorized into 
rule-based, template-based, and data-driven [33] behavior genera-
tion approaches. We defne rule-based approaches as those that 
require a formalized set of rules and operations (typically provided 
by a person) which are used to generate subsequent robot behavior. 

Rule-based approaches enable behavior generation through for-
malized sets of rules and operations [2]. Some methods include 
interfaces that lets users manually specify interaction rules and 
logic [4, 5, 23, 24, 35]. Other methods work by observing and 
modelling humans [3, 13, 14, 18]. Despite their use, rule-based 
approaches face several issues, including limited expressivity in the 
generated behavior due to the requirement of formal rules, and the 
reduced ability to produce multimodal behaviors as the number 
of modalities increases [33]. Template-based methods formulate 
generic templates for interaction by learning from traces of interac-
tion data [7, 11]. Templates can translate few examples of human 
traces into reusable programs through program synthesis [19, 34]. 
Traces can be collected by observing humans interacting [34, 36], 
or through approaches such as sketching [37] or tangibles on a 
tabletop [38]. Overall, prior rule- and template-based methods en-
force strong constraints to enable behavior generation but are lim-
ited in their expressivity. In contrast, GenEM enables increased 
expressivity in the initial behavior generation as well as iterative 
improvements through live user feedback. 

On the other hand, data-driven approaches produce behaviors 
using models trained on data. Some methods learn interaction logic 
through data and use this to produce multimodal behaviors via 
classical machine learning methods [9, 15, 27]. Other methods train 
on hand-crafted examples through generative models [28, 42]. For 
instance, predicting when to use backchanneling behaviors (i.e., 
providing feedback during conversation such as by nodding) has 
been learned through batch reinforcement learning [17] and recur-
rent neural networks [31]. Lastly, recent work has investigated how 
to learn cost functions for a target emotion from user feedback [49], 
or even learn an emotive latent space to model many emotions [40]. 
However, these approaches are data inefcient and require special-
ized datasets per behavior to be generated, while GenEM is able 
to produce a variety of expressive behaviors with a few examples 
through in-context learning. 
LLMs for Robot Planning and Control. Recent work has achieved 
great success by leveraging LLMs in downstream robotics tasks 
specifcally by providing sequences of desirable input-output pairs 
in context [10, 29, 30]. In addition, LLMs have been used for long-
horizon task planning [1, 26], and can react to environmental and 
human feedback [16]. LLMs have been leveraged for designing re-
ward functions for training reinforcement learning agents [22, 48]. 
Research has also shown that LLMs can enable social and common-
sense reasoning [20] as well as infer user preferences by summariz-
ing interactions with humans [47]. Most relevant to our approach 
are prior work where LLMs synthesize code to control virtual [44] 
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[Scenario]
Acknowledge the person walking 
by. You cannot speak.

Expressive Instruction 
Following

Rules:
-[Scenario] describes the scenario 
in which you find yourself.
…
Examples
…

Rules:
- Translate [What human would do] 
into [What robot should do] with the 
[Robot capabilities] listed.
…
Capabilities
- Head: The head can pan between 
a given range.
…
Examples
…

Human to Robot 
Expressive Motion

Robot Expressive
Motion to Code

Rules:
- Generate Python code to execute a 
step-by-step procedure of [What 
robot should do]…
…
Robot API
def move_head_to_pose(goal_pose):
…
Examples
…

Propagating Human
Feedback

 def acknowledge_person_walking_by():
  human_location = find_human()
  look_at(human_location)
  move_head(direction=down)
  time.sleep(1.0)
  move_head(direction=up)
  change_light(color=green)

[Feedback]
Make sure to keep looking at the 
person as they walk away.

h

hpre

lin

rpre c

rexp c

f

f

i

i

pre

= Frozen LLM

^

Figure 2: Generative Expressive Motion. Given a language instruction ��� , the Expressive Instruction Following module reasons 
about the social norms and outputs how a human might express this behavior (ℎ). This is translated into a procedure for robot 
expressive behavior using a prompt describing the robot’s pre-existing capabilities (���� ) and any learned expressive behaviors. 
Then, the procedure is used to generate parametrized robot code � that can be executed. The user can provide iterative feedback 
�� on the behavior which is processed to determine whether to re-run the robot behavior module frst followed by the code 
generation module or just the code generation module. Note: * shown on top of all the gray modules denotes them as frozen LLMs. 

and robotic agents [25, 39] by using existing APIs to compose more 
complex robot behavior as programs. We are also encouraged by 
work demonstrating that language can be used to correct robot 
manipulation behaviors online [6]. Taken together, we propose 
to leverage the rich social context available from LLMs, and their 
ability to adapt to user instructions, to generate expressive robot 
behaviors. To our knowledge, LLMs have not previously been used 
to generate expressive robot behaviors that adapt to user feedback. 

3 GENERATIVE EXPRESSIVE MOTION 
Problem Statement. We aim to tackle the problem of expressive 
behavior generation that is both adaptive to user feedback and 
composable so that more complex behaviors can build on simpler 
behaviors. Formally, we defne being expressive as the distance 
between some expert expressive trajectory that could be generated 
by an animator (or demonstrated) �expert and a robot trajectory � . 
dist(�, �expert) can be any desirable distance metric between the 
two trajectories, e.g., dynamic time warping (DTW). GenEM aims 
to minimize this distance �∗ = min dist(�, �expert). 

Our approach (Figure 2) uses several LLMs in a modular fashion 
so that each LLM agent plays a distinct role. Later, we demonstrate 
through experiments that a modular approach yields better quality 
of behaviors compared to an end-to-end approach. GenEM takes 
user language instructions ��� ∈ � as input and outputs a robot 
policy �� , which is in the form of a parameterized code. Human 
iterative feedback �� ∈ � can be used to update the policy �� . The 
policy parameters get updated one step at a time given the feedback 
�� , where � ∈ {1, . . . , �}. The policy can be instantiated from some 
initial state �0 ∈ � to produce trajectories � = {�0, �0, . . . , �� −1, �� }
or instantiations of expressive robot behavior. Below we describe 
one sample iteration with human feedback �� . Please refer to Ap-
pendix A for full prompts. 
Expressive Instruction Following. The input to our approach is 
a language instruction ��� ∈ �, which can either be a description of 
a social context where the robot needs to perform an expressive be-
havior by following social norms (e.g., “A person walking by waves 
at you.”) or an instruction that describing an expressive behavior 
to be generated (e.g., “Nod your head”). The input prompt is of 
the form � = [ℎ��� , ��� ] where ℎ��� is the prompt prefx that adds 

context about the role of the LLM and includes few-shot examples. 
The output of the LLM call is a string of the form ℎ = [ℎ��� , ℎ��� ]
consisting of Chain-of-Thought reasoning ℎ��� [45] and the human 
expressive motion ℎ��� in response to the instruction. For example, 
for ��� = “Acknowledge a person walking by. You cannot speak.”, the 
Expressive Instruction Following module would output ℎ��� = Make 
eye contact with the person. Smile or nod to acknowledge their pres-
ence. Examples of ℎ��� could be: “The person is passing by and it’s 
polite to acknowledge their presence. Since I cannot speak, I need to 
use non-verbal communication. A nod or a smile is a universal sign 
of acknowledgement.” 
From Human Expressive Motion to Robot Expressive Motion. 
In the next step, we use an LLM to translate human expressive mo-
tion ℎ to robot expressive motion � . The prompt takes the form 

ˆ� = [���� , ���, ℎ, �� −1��� , ] where ���� is the prompt prefx �� −1��� 
setting context for the LLM, contains few-shot examples, and de-
scribes the robot’s capabilities some of which are pre-defned (e.g., 
the ability to speak or move its head) and others which are learned 
from previous interactions (e.g., nodding or approaching a person). 
Optionally, the prompt can include the response from a previous 
step �� −1 and response to user iterative feedback from a previous 
step �� −̂1. The output is of the form � = [���� , ���� ] consisting of 
the LLM’s reasoning and the procedure to create expressive robot 
motion. An example response ���� could include: “1) Use the head’s 
pan and tilt capabilities to face the person who is walking by. 2) Use 
the light strip to display a pre-programmed pattern that mimics a 
smile or nod.”. An example of ���� could be: “The robot can use its 
head’s pan and tilt capabilities to make "eye contact" with the person. 
The robot can use its light strip to mimic a smile or nod.”. 
Translating Robot Expressive Motion to Code. In the following 
step, we use an LLM to translate the step-by-step procedure of how 
to produce expressive robot motion into executable code. We pro-
pose a skill library in a similar fashion to that of Voyager [44] con-
taining existing robot skill primitives, and parametrized robot code 
�� representing previously learned expressive motions. To facilitate 
this, the prompt encourages modular code generation by provid-
ing examples where small, reusable functions with docstrings and 
named arguments are used to generate more complex functions that 
describe an expressive behavior. To generate code, the prompt to 
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the LLM takes the form� = [���� , ���, ℎ��� , ����,� −1��� �� −̂1,, �� −1��� , 
���� ]. Here, ���� provides context about its role as a code gener-
ating agent to the LLM, includes the robot’s current skill library, 
and contains few-shot examples. Optionally, the expressive robot 
motion ����,� −1, and code �� −1 from a previous step can be provided 

as well as LLM output �� −̂1 responding to the user feedback �� −1 . 
The output � is parametrized robot code representing the policy �� 
for the expressive behavior (see Figure 2 for sample output). Later, 
the generated code can be incorporated into the robot’s skill library 
to utilize in future expressive behavior generations. 
Propagating Human Feedback. In the fnal (optional) step, we 
use an LLM to update the generated expressive behavior in response 
to human feedback �� if the user is not satisfed with the generated 
behavior. The prompt is of the form � = [���� , ���, ���� , �, �� ], where 
���� provides context to LLM, and includes both the procedure for 
expressive robot motion ���� and the generated code � . The output 
is of the form � = [���� , �̂� ] and includes the LLM’s reasoning and 
the changes �̂� needed to improve the current expressive motion 
based on human feedback. The output also classifes whether the 
changes require an iterative call to modify the procedure for gener-
ating the robot’s expressive behavior � and then translating it to 
code � , or just modifying the generated code � . 

For example, the user could state �� = “When you frst see the 
person, nod at them.”, and the output �̂� could be: “[Change: What 
robot should do]...As soon as the robot sees the person, it should nod at 
them. After nodding, the robot can use its light strip to display a pre-
programmed pattern that mimics a smile or nod...”. As an example, 
���� could state: “ The feedback suggests that the robot’s action of 
acknowledging the person was not correct. This implies that the robot 
should nod at the person when it frst sees them.” 

4 USER STUDIES 
We conducted two user studies to assess whether our approach, 
GenEM, can be used to generate expressive behaviors that are 
perceivable by people. We generated two versions of behaviors: 
GenEM, and GenEM with iterative Feedback (or GenEM++). In both 
studies, all comparisons were made against behaviors designed by 
a professional animator and implemented by a software developer, 
which we term the oracle animator. In the frst study, our goal was 
to assess whether behaviors that are generated using GenEM and 
GenEM++ would be perceived similarly to the behaviors created 
using the oracle animator. In the second study, we attempted to 
generate behaviors using GenEM and GenEM++ that were similar 
to the behaviors created using the oracle animator. Both studies aim 
to demonstrate that our approach is adaptable to human feedback. 
Behaviors. All behaviors were generated on a mobile robot plat-
form (please see website 1 for full clips). The robot has several 
capabilities that can be used to generate behaviors through existing 
APIs, including a head that can pan and tilt, a base that can trans-
late, rotate, and navigate from point to point, a light strip that can 
display diferent colors and patterns, and fnally, a speech module 
that can generate utterances and nonverbal efects. To enable the 
comparison of behaviors produced in the three conditions – oracle 
animator, GenEM, and GenEM++, we recorded video clips of each 

1https://generative-expressive-motion.github.io/ 
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behavior (see Figure 3). To ensure consistency across conditions, 
behaviors in each condition were recorded in the same physical loca-
tions under similar lighting conditions. The GenEM and GenEM++ 
behaviors were generated by sampling OpenAI’s GPT-4 APIs for 
text completion [32] (gpt-4-0613) with the temperature set to 0. 
Study Procedure. After providing informed consent, participants 
completed an online survey to evaluate the robot’s expressive be-
haviors in both studies. The survey is divided into three sections 
(one per behavior condition) and clips within each condition ran-
domly appeared. To minimize ordering efects, a Balanced Latin 
Square design (3 x 3) was used. For each behavior in each condition, 
participants watched an unlabeled video clip 1, and then answered 
questions. All participants received remuneration after the study. 
Measures. In both studies, participants completed a survey to 
assess each behavior, answering three 7-point Likert scale questions 
assessing their confdence on their understanding of the behavior, 
the difculty in understanding what the robot is doing, and the 
competency of the robot’s behavior. Participants also provided an 
open-ended response describing what behavior they believed the 
robot was attempting to express. 
Analysis. One-way repeated-measures ANOVA were performed 
on the data with post-hoc pairwise comparisons where there were 
signifcant diferences with Bonferroni corrections applied. When 
reporting comparisons between conditions, we defne instances as 
pairwise signifcant conditions for at least one of the three Likert-
scale questions asked about a behavior. 

4.1 Study 1: Benchmarking Generative 
Expressive Motion 

To determine whether our approach produces expressive behaviors 
that people can perceive, we conducted a within-subjects user study 
with thirty participants (16 women, 14 men), aged 18 to 60 (18-25: 
3, 26-30: 9, 31-40: 9, 41-50: 7, 51-60: 2). One participant did not 
complete the entire survey and their data was omitted. 
Behaviors. We generated ten expressive behaviors (see Figure 3) 
ranging in complexity: Nod, shake head (Shake), wake up (Wake), 
excuse me (Excuse), recoverable mistake (Recoverable), unrecov-
erable mistake (Unrecoverable), acknowledge person walking by 
(Acknowledge), follow person (Follow), approach person (Approach) 
and pay attention to person (Attention). The input included a one-
line instruction (e.g., Respond to a person saying, “Come here. You 
cannot speak.” ). 
Conditions. The oracle animator condition consisted of profes-
sionally animated behaviors that were implemented on the robot 
through scripting. To create the GenEM behaviors, we sampled our 
approach fve times to generate fve versions of each behavior. Since 
the behaviors were sampled with a temperature of 0, they shared 
signifcant overlap with small variations amongst them (due to non-
determinism in GPT-4 output; please see Appendix C for samples 
generated using the same prompt). Then, six participants experi-
enced in working with the robot were asked to rank them. The 
best variation for each behavior was included as part of the GenEM 
behaviors. To generate the GenEM++ behaviors, we recruited one 
participant experienced in using the robot (but inexperienced in 
HRI behavior design) and asked them to provide feedback on the 
best rated version of each behavior. Feedback was used to iteratively 
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 Nodding its head in acknowledgment.  Robot shakes head to convey confusion.  Robot replies to “Hey, robot.”  Robot responds to person in the way.  Robot makes mistake it can recover from. Robot makes mistake it cannot recover from.

 Robot acknowledges person walking by.
Robot responds to person asking to follow and  
lets them know if they’re too far ahead.

Robot acknowledges person walking by. They 
stop so the robot engages them. Robot approaches person after being asked to. Robot pays attention to person teaching it.

Robot approaches person and actively listens 
to them as they demonstrate a task.

A A B B

Figure 3: Behaviors tested in the two user studies where the behaviors labelled in green denote those unique to the frst study 
and behaviors labelled in blue denote those unique to the second study. The remaining behaviors (8) were common among the 
two studies. 

modify the expressive behavior until the participant was satisfed 
with the result, or upon reaching the maximum number of feed-
back rounds (n = 10). We note that although participants rated the 
behaviors in the studies, the behavior generation is personalized to 
the user who provided the initial feedback, which may not refect 
the preferences of all potential users (e.g., study participants). 
Hypotheses. We hypothesized that the perception of the GenEM++ 
behaviors would not difer signifcantly from the oracle animator 
behaviors (H1). We also hypothesized that the GenEM behaviors 
would be less well-received compared to the GenEM++ and the 
oracle animator behaviors (H2). 
Quantitative Findings. Figure 4 summarizes participants’ re-
sponses to the survey questions for each behavior. The results 
show that the GenEM++ behaviors were worse than the oracle ani-
mator behaviors in 2/10 instances (Shake and Follow). In contrast, 
the GenEM++ behaviors received higher scores than the oracle 
animator behaviors in 2/10 instances (Excuse and Approach). Hence, 
H1 is supported by our data – the GenEM++ behaviors were well 
received and the oracle animator behaviors were not signifcantly 
better received than the GenEM++ behaviors. 

The GenEM behaviors were worse received compared to the 
oracle animator behaviors in 2/10 instances (Acknowledge Walk 
and Follow) whereas the GenEM behaviors were better received 
than the oracle animator behaviors in 2/10 instances (Excuse and 
Approach). This was surprising because user feedback was not 
incorporated into the behavior generation in this condition. Besides 
1/10 instances (Shake), there were no signifcant diferences in 
the perceptions of the GenEM and GenEM++ behaviors. Hence, 
we did not fnd support for H2. We performed equivalence tests 
(equivalence bound: +/- 0.5 Likert points) but did not fnd any 
sets of behaviors to be equivalent. Overall, the results support 
the fnding that GenEM (even with an untrained user providing 
feedback) produces expressive robot behaviors that users found to 
be competent and easy to understand. 

4.2 Study 2: Mimicking the Oracle Animator 
We conducted an additional within-subjects user study with twenty 
four participants (21 men, 2 women, 1 prefer not to say), aged 
18-60 (18-25: 4, 26-30: 3, 31-40: 12, 41-50: 4, 51-60: 1) to assess 

whether using GenEM to generate behaviors that resembled the 
oracle animator would be perceived diferently. One participant did 
not complete the entire survey and their data was omitted. 
Behaviors. We generated ten expressive behaviors ranging in com-
plexity, with eight overlapping 2 behaviors from the frst study (see 
Figure 3): nod (Nod), shake head (Shake), wake up (Wake), excuse 
me (Excuse), recoverable mistake (Recoverable), unrecoverable mis-
take (Unrecoverable), acknowledge person walking by (Acknowledge 
Walking), acknowledge person stopping by (Acknowledge Stop), fol-
low person (Follow), and teaching session (Teach). Behaviors that 
were diferent from the frst study were chosen to add further com-
plexity – e.g., longer single-turn interactions such as teaching, that 
started with a person walking up a robot, teaching it a lesson, and 
lastly the robot acknowledging that it understood the person’s in-
structions. Unlike in the frst study, the prompts were more varied 
and sometimes included additional descriptions such as for the 
more complex behaviors (see Appendix B for full prompts for 
each behavior). To generate each GenEM behavior, we sampled our 
approach ten times after which an experimenter selected the ver-
sion that appeared most similar to the equivalent oracle animator 
behavior when deployed on the robot. To create each GenEM++ 
behavior, an experimenter refned the GenEM behavior through 
iterative feedback until it appeared similar to the equivalent ora-
cle animator behavior or after exceeding the maximum number of 
feedback rounds (n = 10) 1. 
Hypotheses. We hypothesized that user perceptions of the GenEM++ 
behaviors would not signifcantly difer when compared to the ora-
cle animator behaviors (H3). We also suppose that the behaviors 
in the GenEM condition would be perceived as worse than the 
GenEM++ and oracle animator behaviors (H4). 
Quantitative Findings. The results of the study are summarized 
in Figure 5. They show that the GenEM++ behaviors were worse 
received than the oracle animator behaviors in 2/10 instances (Ac-
knowledge Walk and Follow) whereas the GenEM++ behaviors were 
more positively received than the oracle animator in 2/10 instances 
(Excuse and Teach). Hence, our hypothesis is supported by the data 

2Some behaviors in the second study difer from the frst study as they are too complex 
to express as a single line instruction which we maintained for consistency in the 
frst study. Instead, in the frst study, these complex behaviors were broken down into 
simpler behaviors (e.g., teaching is equivalent to approaching and paying attention). 

486



HRI ’24, March 11–14, 2024, Boulder, CO, USA Karthik Mahadevan et al. 

*
*

*
*

*
*

*

*
* ****

**
**

**
**

*
*

Figure 4: Plots showing participants’ survey responses to three questions about each behavior (of 10) in each condition (of 3) in 
the 1st user study. Bars at the top denote signifcant diferences, where (*) denotes p<.05 and (**) denotes p<.001. Error bars 
represent standard error. The frst plot shows the average score for each question across conditions. The arrows refect the 
direction in which better scores lie. 
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Figure 5: Plots showing participants’ survey responses to three questions about each behavior (of 10) in each condition (of 3) in 
the 2nd user study. Bars at the top denote signifcant diferences, where (*) denotes p<.05 and (**) denotes p<.001. Error bars 
represent standard error. The frst plot shows the average score for each question across conditions. The arrows refect the 
direction in which better scores lie. 

(H3) – the GenEM++ behaviors well received and the oracle an-
imator behaviors were not signifcantly better perceived. When 
comparing the oracle animator behaviors and GenEM behaviors, 
there were 4/10 instances where the GenEM behaviors were worse 
received (Wake, Acknowledge Walk, Acknowledge Stop, and Fol-
low), and 1/10 instances where the GenEM behaviors were more 
positively rated (Excuse). As with the frst study, it is somewhat 
surprising that the GenEM behaviors were better received than the 
baselines in one instance; although they resemble them, they do not 
capture all the nuances present in the oracle animator behaviors 
since user feedback is not provided. Lastly, the GenEM behaviors 
were rated worse than the GenEM++ behaviors in 2/10 instances 
(Wake and Teach) whereas there were 0/10 instances where the 
reverse was true. Hence, we did not fnd support for the last hy-
pothesis (H4). Upon performing equivalence tests (equivalence 

bound: +/- 0.5 Likert points), we did not fnd any sets of behaviors 
to be equivalent. Overall, the fndings suggest that expressive robot 
behaviors produced using our approach (with user feedback) were 
found competent and easy to understand by users. 

5 EXPERIMENTS 
We conducted a set of experiments to carefully study diferent as-
pects of GenEM. This includes ablations to understand the impact 
of our prompting structure and the modular calls to diferent LLMs 
versus an end-to-end approach. Further, through an experiment, 
we demonstrate that GenEM can produce modular and composable 
behaviors, i.e., behaviors that build on top of each other. The be-
haviors were generated by sampling OpenAI’s GPT-4 APIs for text 
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GenEM Ablated 
Execution Norms Execution Norms 

Nod 5 0 5 2 
Shake 5 0 5 2 
Wake 4 2 3 0 
Excuse 5 3 0 -
Recoverable 3 0 5 1 
Unrecoverable 5 0 5 0 
Acknowledge 5 1 5 0 
Follow 3 1 0 -
Approach 5 1 5 3 
Attention 4 0 1 0 

Table 1: Ablations on the mobile robot platform showing the 
successful attempts of behavior generation when sampling 
each prompt fve times to compare our approach (without 
feedback) against a variation without the Expressive Instruc-
tion Following module and subsequently the module trans-
lating human expressive motion to robot expressive motion. 
The Execuution column indicates the number of successful 
attempts (/5). The Norms column indicates the number of at-
tempts where social norms were not appropriately followed 
(coded by the experimenter). 

Execution Norms 

Nod 5 0 
Shake 5 0 
Wake 5 0 
Excuse 3 0 
Recoverable 5 2 
Unrecoverable 4 0 
Acknowledge 4 1 
Follow 2 2 
Approach 5 5 
Attention 1 0 

Table 2: Behaviors generated on the quadruped in simulation 
showing successful attempts of behavior generation when 
sampling each prompt fve times. The Execution column in-
dicates the number of successful attempts (/5). The Norms 
column indicates the number of attempts where social norms 
were not properly observed (coded by the experimenter). 

completion [32] (gpt-4-0613) with the temperature set to 0. In addi-
tion to our user study and experiments on the mobile manipulator, 
we conducted further experiments using a quadruped simulated in 
Gazebo/Unity via ROS (see Figure 6). 
Ablations. We performed ablations to compare GenEM to an end-
to-end approach that takes language instructions and makes one 
call to an LLM to generate an expressive behavior. The ablations 
were performed using existing APIs for the mobile robot. The be-
haviors examined were identical to the frst user study along with 
the prompts. Each prompt was sampled fve times to generate be-
haviors and executed on the robot to verify correctness. Further, an 
experimenter examined the code to check whether the behavior 
code incorporated reasoning to account for human social norms. 
The results for code correctness and social norm appropriateness 
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Figure 6: Quadruped simulated in Gazebo performing the Re-
coverable mistake behavior (top) and Unrecoverable mistake 
(bottom) generated by GenEM prior to feedback. After mak-
ing a recoverable mistake, the robot demonstrates it made a 
mistake by turning away, lowering its legs, and fashing red 
lights to convey regret but then returns to its initial position 
and fashes a green light. In contrast, an unrecoverable mis-
take causes the robot to lower its height, display red lights 
for a brief period, and bow forwards and maintains this pose. 

are shown in Table 1. Overall, our approach produced higher suc-
cess rates compared to the ablated variation where no successful 
runs were generated for 2 behaviors – Excuse and Follow. For the 
Excuse behavior, the robot must check the user’s distance and signal 
to a person that they are in its way. However, for the ablated varia-
tion, the distance was never checked in the attempts. For the Follow 
behavior, the code called functions that were not previously defned, 
and used the wrong input parameter type when calling robot APIs, 
resulting in zero successful attempts. Further, nearly all generated 
functions were missing docstrings and named arguments, which 
could make it difcult to use them in a modular fashion for more 
complex behaviors (despite providing few-shot code examples). 

We qualitatively observed that behaviors generated by GenEM 
refected social norms, particularly for more complex behaviors, 
and looked similar for simpler behaviors. For instance, the Excuse 
behavior generated by GenEM used the speech module to say, 
“Excuse me”. For the Attention behavior, the ablated variations looked 
at the person, turned on the light strip, and then turned it of, 
whereas the GenEM variations also incorporated periodic nodding 
to mimic “active listening”. For the Approach behavior, the GenEM 
variations always incorporated a nod before moving towards the 
person while the ablated variations never used nodding; instead 
lights were used in two instances. 
Cross-Embodiment Behavior Generation. We sampled the same 
prompts in the frst user study fve times per behavior using API for 
a simulated Spot robot. The results, summarized in Table 2, show 
that we were able to generate most expressive behaviors using 
the same prompts using a diferent robot platform with its own 
afordances and APIs. However, some generated behaviors such 
as Approach included variations where the robot navigated to the 
human’s location instead of a safe distance near them, which would 
be considered a social norm mismatch (possibly due to the lack of 
a distance threshold parameter in the translate API), while some 
did not account for the human (e.g., the robot rotating an arbitrary 
angle instead of towards the human for Attention). Overall, the 
success rates hint at the generality of our approach to difering 
robot embodiments. 
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Eye Blinking Look Shake Nod 
contact lights around head head 

Acknowledge Walk 5 - - - 5 
Approach 4 5 - - 0 
Confusion - 4 1 5 -

Table 3: Number of times (out of 5 attempts) where 
previously-learned behaviors (columns) are used when com-
posing new behaviors (rows) using GenEM. Dashes indicate 
that the given learned behavior API is not provided when 
prompting the creation of the new behavior. 

Insert Swap Loop Remove 
actions actions actions capability 

Excuse 4 5 5 5 
Approach 4 5 5 3 
Acknowledge Stop 5 5 4 3 

Table 4: Success rates (out of 5 attempts) when providing dif-
ferent types of feedback to behaviors generated using GenEM, 
where: Insert actions request a new action be added ahead 
of other actions, Swap actions request to swap the order of 
existing actions, Loop actions request to add loops to repeat 
actions, and Remove capability requests to swap an existing 
action with an alternate one. 

Composing Complex Expressive Behaviors. In the user studies, 
all behaviors were generated from scratch using few-shot examples 
and existing robot APIs. We attempted to generate more complex 
behaviors using a set of learned expressive behaviors from pre-
vious interactions — these skills (represented as functions with 
docstrings) were appended to the prompts describing the robot’s 
capabilities (step 2 of our approach) as well as the robot’s API (step 
3 of our approach). The learned behaviors used in the prompt were: 
nodding, making eye contact, blinking the light strip, looking around, 
and shaking. We prompted GenEM to generate three behaviors, 
varying in complexity: Acknowledge Walk, Approach, and express-
ing confusion (Confusion). All of these behaviors were generated 
on the quadruped without providing feedback, using instructions 
that contained a single line description of the desired behavior. 
We sampled GenEM fve times to assess the frequency with which 
learned behaviors would be included in the outputted program. To 
assess success, an experimenter checked whether the generated 
code utilized a combination of robot APIs and learned APIs (see Ta-
ble 3). For the approach behavior, it was surprising to note that the 
nod head behavior was never utilized whereas blinking lights were 
always used. For expressing confusion, it was surprising that 4/5 
instances generated code for looking around, but only 1/5 instances 
used the existing looking around behavior. 
Adaptability to Human Feedback. In the user studies, feedback 
had some efect on the perception of the generated behaviors. Fur-
ther, we qualitatively observed that feedback could steer the behav-
ior generation in diferent ways. We studied this in an experiment 
where we generated three behaviors from the two prior studies: 

Excuse, Approach, and Acknowledge Stop. Each behavior was gen-
erated using a single-line description as before, and without any 
learned robot APIs. We attempted to modify the generated behavior 
through four types of feedback: (1) adding an action and enforcing 
that it must occur before another action, (2) swapping the order 
of the actions, (3) making a behavior repeat itself (loops), and (4) 
removing an existing capability without providing an alternative 
(e.g., removing the light strip as a capability after producing a be-
havior that uses the light strip). Overall, the results (see Table 4) 
suggest that it is possible to modify the behavior according to the 
type of feedback provided, though removing capabilities lead to 
calling undefned functions more often. 

6 DISCUSSION 
Summary. In this work, we proposed an approach, GenEM, to 
generate and modify expressive robot motions using large language 
models by translating user language instructions to robot code. 
Through user studies and experiments, we have shown that our 
framework can quickly produce expressive behaviors by way of 
in-context learning and few-shot prompting. This reduces the need 
for curated datasets to generate specifc robot behaviors or carefully 
crafted rules as in prior work. In the user studies, we demonstrated 
that participants found the behaviors generated using GenEM with 
user feedback competent and easy to understand, and in some cases 
perceived signifcantly more positively than the behaviors created 
by an expert animator. We have also shown that our approach is 
adaptable to varying types of user feedback, and that more complex 
behaviors can be composed by combining simpler, learned behaviors. 
Together, they form the basis for the rapid creation of expressive 
robot behaviors conditioned on human preferences. 
Limitations and Future Work. Despite the promise of our ap-
proach, there are a few shortcomings. Our user studies were con-
ducted online through recorded video clips, and although this is 
a valid methodology [12, 43], it may not refect how participants 
would react when in the physical proximity of the robot [46]. Hence, 
further studies involving interactions with the robot should be pur-
sued. Some inherent limitations of current LLMs should be noted, 
including small context windows and the necessity for text input. 

In our work, we only evaluate single-turn behaviors (e.g., ac-
knowledging a passerby), but there are opportunities to generate 
behaviors that are multi-turn and involve back-and-forth interac-
tion between the human and the robot. Future work should also 
explore generating motion with a larger action space such as by 
including the manipulator and gripper. Although we have shown 
that our approach can adapt to user feedback and their preferences, 
there is currently no mechanism to learn user preferences over a 
longer period. In reality, we expect that users will exhibit individual 
diferences in their preferences about the behaviors they expect 
robots to demonstrate in a given situation. Hence, learning pref-
erences in-context [47] may be a powerful mechanism to refne 
expressive behaviors. 

Despite these limitations, we believe our approach presents a 
fexible framework for generating adaptable and composable ex-
pressive motion through the power of large language models. We 
hope that this inspires future eforts towards expressive behavior 
generation for robots to more efectively interact with people. 
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