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Abstract: Evaluating synthetic speech generated by machines is a complicated process, as it
involves judging along multiple dimensions including naturalness, intelligibility, and whether the
intended purpose is fulfilled. While subjective listening tests conducted with human participants have
been the gold standard for synthetic speech evaluation, its costly process design has also motivated the
development of automated objective evaluation protocols. In this review, we first provide a historical
view of listening test methodologies, from early in-lab comprehension tests to recent large-scale
crowdsourcing mean opinion score (MOS) tests. We then recap the development of automatic
measures, ranging from signal-based metrics to model-based approaches that utilize deep neural
networks or even the latest self-supervised learning techniques. We also describe the VoiceMOS
Challenge series, a scientific event we founded that aims to promote the development of data-driven
synthetic speech evaluation. Finally, we provide insights into unsolved issues in this field as well as
future prospects. This review is expected to serve as an entry point for early academic researchers to
enrich their knowledge in this field, as well as speech synthesis practitioners to catch up on the latest
developments.
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1. INTRODUCTION

Synthesized speech, which is artificial speech generated
by a computer, requires evaluation in order to judge
whether it is understandable to listeners, natural-sounding,
well-matched to the target speaker or speaking style, and
generally acceptable for its intended purpose. Evaluation is
also required to judge whether some new synthesis method
is better than a previous one, or whether some new
proposed modification gives an improvement. For as long
as researchers have been developing synthesized speech,
they have also been considering how to evaluate it.
Historically, such evaluation has mainly relied on listening
tests conducted with human listeners. Human opinions are
the gold standard for evaluating synthesized speech
because, after all, it will be humans who will listen to it.
However, such evaluations are very costly and time-
consuming, and researchers have also considered more
automated evaluation methods to streamline the exper-
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imental iteration process. From acoustic correlates of
human opinions to signal-processing-based methods de-
veloped for telephony, to machine learning-based ap-
proaches trained on listening test data, researchers have
been considering and testing out these automated evalua-
tion methods to make their experiments more efficient.
This review will outline a history of evaluation for speech
synthesis, including different types of subjective listening
tests and efforts to find suitable objective metrics. We
will also describe our two years of experience running
the VoiceMOS Challenge, a shared task for data-driven
opinion prediction for the quality of synthesized speech.
Finally, we will describe ongoing work in this area as well
as unsolved issues and future prospects.

2. LISTENING TESTS

This section will overview the listening test method-
ologies that have historically been used for synthesized
speech, as well as current popular methodologies. We will
also make note of some critiques of these methodologies
that have arisen. In the case of modular synthesizers which
have a front-end for linguistic processing, each of the
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linguistic processing components (such as text normal-
ization and grapheme-to-phoneme conversion) may have
their own evaluation methodologies, which can be auto-
mated in the presence of sufficient labeled data. However,
evaluations of the linguistic components of speech
synthesizers are outside of the scope of the paper and
we mainly focus on evaluation of the final synthesized
speech.

2.1. 1980s to Early 1990s: Intelligibility and Compre-
hension

During the 1980s and early 1990s, popular approaches
for computerized speech synthesis were rule-based formant
synthesizers and concatenative unit-selection-based syn-
thesizers based on small units such as diphones or groups
of phonemes. The evaluation mainly focused on aspects
related to intelligibility at the phoneme, word, or sentence
level, as well as comprehension at the multi-sentence or
paragraph level.

A 1990 survey paper [1] describes several evaluation
methodologies for speech synthesis focusing on popular
ones in the decade prior, and their advantages and
disadvantages. The authors point out that most evaluations
for synthesized speech at that point focused on intelligi-
bility. They outline three types of evaluations: compara-
tive, which will reveal which synthesis system is best,
diagnostic, which will assist in identifying problems with
a synthesizer, and applied, which will demonstrate how
well-suited the synthesizer is for a particular application.
An example of an applied evaluation is a controlled field
test, in which a synthesizer is evaluated in the real world
in its intended application with real users as the listeners —
it is stated that this kind of test is relatively uncommon,
and how to design ecologically-valid listening tests still
remains an open question.

The Modified Rhyme Test (MRT) [2] is a test
developed for telephony for evaluating intelligibility at
the phoneme level, and it is cited as the most frequently-
used listening test at the time for comparative evaluations
of speech synthesizers in controlled conditions. In an MRT,
listeners hear a monosyllabic word, often in the context of
a carrier sentence, and then they must choose the word that
they heard from a list of six choices which vary by either
the initial or final consonant. The MRT is a variation of the
Diagnostic Rhyme Test (DRT) [3], which only presents
listeners with two possible choices. Positive aspects of the
modified rhyme test are that it is reliable as well as easy
to conduct. Its drawbacks are that the test scenario is
unrealistic compared to actual use cases for synthesized
speech, and this limited scenario results in artificially high
scores. The multiple-choice paradigm also does not reveal
confusions that listeners may have made that are not
presented among the six choices. Furthermore, consonant
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clusters are not evaluated in a standard MRT. Therefore,
variations of the MRT were sometimes deployed, such as
ones making use of open responses [4] and ones including
consonant clusters in the testing material [5].

A 1993 paper [6] describes several perceptual tests
used by Bell Labs that have a more diagnostic focus. Their
in-house speech synthesis system was a concatenative one
using a database of units ranging in length from one to five
phonemes, and they evaluated two versions of this along
with the commercial DECtalk formant synthesizer and
natural speech. Their motivations were to evaluate the
coverage of their dataset and to identify bad units that may
require re-recording. This paper describes how listening
tests were typically conducted at the time — listeners were
recruited from the local area near the office and in most
cases they were not only unfamiliar with speech synthesis
but also with computers in general and they did not have
keyboard typing skills. So, listeners either used very simple
user interfaces that only required pushing one or two
buttons to make a choice, or else they were asked to write
down what they heard using pencil and paper in the case of
transcription tasks, and their responses would be entered
into a computer later on. They conducted a word pointing
test for detecting bad units, in which listeners point at
words in a sentence where they hear problems and rate
their severity; a minimal pairs intelligibility test, similar
to the DRT except using word lists that cover more types
of sounds such as vowels, consonant clusters, and multi-
syllabic words; an orthographic name transcription task
in which listeners write down proper names that they hear;
quality ratings scores with problem -categorization,
similar to quality MOS but with a follow-up question
asking listeners to choose a category of the problem they
identify with the audio if their rating is low; and paired
comparisons with certainty ratings, a modification of
a simple pairwise comparison test where listeners also
indicate the strength of their preference on a 1-6 scale. The
authors reiterate that ratings of synthesized speech are
inherently context-sensitive and therefore cannot be mean-
ingfully compared across tests.

Beyond the phoneme level, word-level and sentence-
level intelligibility of synthesized speech can be assessed
by way of a transcription task that asks listeners to write
down the word or sentence that they hear. Results are
reported in terms of the percentage of words that were
correctly identified. The testing material can consist of
meaningful sentences that are chosen to have good cover-
age of the sounds of the language or to be representative of
the target use case for the synthesizer, or semantically-
unpredictable sentences (SUS) [7], which are grammati-
cally-correct nonsense sentences. Although meaningful
sentences better reflect a real-life use case, testing with
SUS can give a more realistic picture of the intelligibility
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of the systems under comparison because the effect of
contextual clues is removed. Intelligibility tests using
SUS are more rigorous and provide a kind of “lower
bound” [8] for how well the system can be expected to be
understood.

A 1980 paper [8] on the evaluation of the MITalk rule-
based formant synthesizer critiques past (uncited) synthesis
studies for focusing too much on intelligibility and not
enough on comprehension, a listener’s ability to understand
and retain information from what they heard. In addition to
conducting MRT tests and tests for word recognition in a
sentence using both meaningful sentences and SUS, they
also conducted a listening comprehension test in which
listeners heard narrative passages and several multiple-
choice questions about their contents, based on stand-
ardized reading comprehension tests. They compared
listening to synthesized speech to both listening to natural
speech and reading the passage to measure the compre-
hension differences in each case. However, this same
study shows that this kind of comprehension test is already
saturated, that is, it is not sensitive enough to reveal
differences between natural and synthesized speech. A
decade later, the 1990 survey paper notes that paragraph-
level comprehension evaluations still remain scarce despite
this being an important and realistic use case for speech
synthesizers. Sentence-level intelligibility and comprehen-
sion can also be measured using a sentence verification
task, in which listeners have to quickly decide whether a
sentence is factually correct or not, and results can be
measured in terms of listener latency and accuracy.

The 1990 survey paper gives a short overview of
listening tests that evaluate intonation, which were starting
to receive some attention at the time but were not yet as
widely used as intelligibility tests. These include pairwise
comparison tests in which listeners hear the same sentence
realized by two different synthesizers and choose which
one they prefer, Mean Opinion Score tests (MOS) [9]
in which listeners rate an audio sample on an Absolute
Category Rating (ACR) scale for some characteristic of the
audio such as its naturalness, and magnitude estimation
tests, in which listeners assign numbers of their own
choosing to describe their perception of the magnitude of
some aspect of the audio and their answers are normalized
later [10]. Pairwise comparison tests can reveal fine-
grained differences between systems as listeners are forced
to make direct comparisons, and the human auditory
system has a better ability to make comparisons rather than
absolute judgments [11]; however, pairwise comparison
tests are not well-suited for longer passages and they don’t
scale well to a large number of synthesizers as generally
all pairs must be compared. MOS tests have become very
popular, which will be discussed further in later sections.
The magnitude estimation test was found to give unreliable

results [10] and has not caught on as a major evaluation
paradigm for speech synthesis.

As the MOS testing paradigm was gathering some
interest for speech synthesis by this point, researchers
started to consider the best ways to use it. A 1992 study
[10] investigated two aspects of listening test design in the
evaluation of four unnamed Swedish synthesizers. First, the
granularity of the rating scale was evaluated by comparing
a standard 5-point scale to an 11-point scale with half-point
increments. Next, the question of which which systems
to include in the listening test “context” was also
addressed —they considered a “narrow” context where
listeners only hear the four synthesizers, a middle context
where natural speech is added, and a wide context where
a low-quality reference is also included in the form of
natural speech distorted with noise. Their results showed
that increasing the listening test context reduced the scores
that listeners gave to the synthesis systems in both the
“middle” and “wide” context cases, and that scores also
became reduced and more compressed in the case of the
11-point rating scale compared to the 5-point scale. These
early results demonstrate that MOS is relative, not
absolute, and depends on the testing materials and interface
provided to the listeners.

2.2, Mid-1990s and 2000s: Naturalness, Intelligibility,
and Efforts to Standardize

As the storage capacity of computers improved,
concatenative synthesizers were developed to make use
of larger databases from which longer units could be
selected. With the improved quality of speech synthesis,
evaluation during this era shifted from focusing mainly on
intelligibility to including a more comprehensive evalua-
tion of naturalness and prosodic factors. Efforts to develop
standards for evaluating synthesized speech also increased,
as did some introspection by researchers in the field as to
whether evaluations are being conducted in a valid way or
if improvements could be made.

The 1994 ITU-T Recommendation P.85 [12] represents
an early effort to develop a recommended evaluation
protocol specifically for synthesized speech. Based on the
ITU-T Rec. P.80 [13] developed for telephony, this
specification recommends using a set of ACR-based
questions for different aspects of listener opinion such as
overall impression, self-reported listening effort, articula-
tion, and a final binary question about whether the voice is
acceptable. Listeners conduct the ACR part of the test after
an initial round of testing for comprehension of the same
audio material, but P.85 gives no recommendation about
how to use the results of this part of the test, indicating that
comprehension is considered necessary but is still not a
main focus. P.85 also outlines some standardization details,
such as that at least 5 different synthesis systems should
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be included in the test, audio samples should range from
10-30 seconds in duration, a training session should be
provided for listeners, and one listening session should
range from 40-60 minutes. A 1996 paper [14] provides
similarly detailed recommendations for running SUS-based
transcription tests, recommending the use of several
different sentence types that generalize well across Euro-
pean languages, using short and common words. In 2000,
guidelines were published [15] for evaluating Japanese
synthesizers, focusing on intelligibility at the syllable,
word, and sentence level, and overall quality, with
recommendations to ask listeners about rhythm, intonation,
and overall suitability.

A 2002 study of the reliability of P.85 [16] noted that,
eight years later, P.85 had not seen much adoption,
possibly because it seems complicated to run and is not
embedded in a real task. They evaluated six different
commercial English concatenative synthesizers using both
the P.85 paradigm and a simple pairwise test. They aimed
to test the effect of genre (domain) by including material
from four different domains, and of listening session, by
bringing back the same group of listeners one week later
to repeat the same test. The authors found very strong
correlations across several of the different P.85 rating
scales, indicating that they may not really be testing
different factors and therefore the complexity of P.85 tests
may not in fact be worthwhile. They found a significant
effect of genre, although system rankings did not change.
Results were found to be very consistent across sessions.
The only scales that differed significantly across sessions
were “listening effort” and “comprehension problems,”
which had differences indicating that listeners had an easier
time listening and comprehending during the second
session and that there was a learning effect. The pairwise
test gave almost the same rankings of systems, with less
variability, and with more significant differences being
revealed between systems with the same number of
listeners. Another study from four years later [17]
comparing P.85 to more commonly-used SUS tests for
intelligibility and MOS tests for naturalness found that
P.85 was not suitable for measuring intelligibility, with
SUS tests being more rigorous and producing more useful
results. However, contrary to the previous study, they
found that the P.85 scales were not all correlated, and P.85
could provide a much more nuanced and informative
picture of the naturalness and overall quality of a system.
They attribute this different result to the fact that
synthesized speech had improved substantially in the
intervening years and that listeners were able to identify
more subtle differences between the systems.

In 1997, a questionnaire was sent out to researchers in
the field of speech synthesis, and the results were reported
[18]. 16 researchers from around the world responded to
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questions about which listening test methods they knew
about, and which ones they had actually used, revealing
that pairwise comparison tests had the most users, and
DRT/MRT tests, comprehension tests, and MOS were
also well-known and used. They also collected free-text
opinions and found that researchers were aware that there
are plenty of choices for listening tests, but it would be
useful to have some kind of guidelines for which test(s) to
choose or adapt for a given case.

In 2005, the first Blizzard Challenge was held [19] to
compare corpus-based text-to-speech synthesis techniques
using standardized datasets and evaluations. The Blizzard
Challenge has run almost every year since, and it has
been an important initiative for documenting the progress
of speech synthesis research. Inspired by the benefits of
standardized datasets and evaluation metrics in the speech
recognition community, the challenge was developed to
provide a common ground for comparing different syn-
thesis techniques. As there is no obvious “best” evaluation
for synthesized speech, the challenge organizers chose to
run a variety of listening tests, namely MOS and sentence
transcriptions of both SUS and carrier sentences containing
words from MRT/DRT word lists. This first edition of the
challenge drew six participating teams from three con-
tinents, and evaluations were conducted online via the
Blizzard homepage, with participants being recruited
through word of mouth from communities of speech
experts, volunteers, and US undergraduate students. MOS
tests and SUS transcription tasks continued to be used in
every subsequent Blizzard challenge, with tests for speaker
similarity being added in later editions on the recommen-
dation of the 2005 organizers. The evaluation method-
ologies set forth by the Blizzard organizers have set a
strong precedent for speech synthesis evaluation.

Although evaluations for naturalness and intelligibility
had become standard by this point, a 2007 book chapter
[20] predicts that tone of voice, manner of speaking,
emotional expressiveness, and, generally speaking, “inter-
personal skills” will become more important for speech
synthesis in the future, and so we will need to find ways
to evaluate these aspects as well.

Listening tests were very common by this point, and a
2008 review [21] considers the various forms of bias that
should be considered when designing and reporting them.
Three categories of bias are described: biases arising from
affective judgments (e.g., appearance of the testing equip-
ment, expectations, personal preferences, emotions and
mood), response mapping bias arising from the test
design (e.g. stimulus spacing and frequency, perceptually
nonlinear scales, and range-equalizing bias, the inclination
of listeners to try to use the entire range of choices
available to them), and interface bias (e.g., the layout of the
assessment scale and the words chosen for the labels).
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2.3. 2010s to the Present: Crowdsourcing, MOS, and
Critiques

Unit selection-based synthesizers were still widely used
at the start of this time period, and the more flexible and
smaller-footprint statistical parametric speech synthesizers
such as hidden Markov model (HMM) based ones [22] had
also emerged. Currently, neural network-based synthesiz-
ers are dominant, with many commercial systems achiev-
ing very natural-sounding synthesis that cannot always be
identified as computer-generated by listeners [23].

Although listening tests were already being conducted
online in cases such as the Blizzard Challenge, laboratory
tests remained commonplace until crowdsourcing plat-
forms such as Amazon Mechanical Turk®, which launched
in 2005, became popular, and especially after the Crowd-
MOS [24] open-source toolkit for running MOS listening
tests on Mechanical Turk was published in 2011. Crowd-
sourcing platforms remove geographic constraints and
expand the pool of potential participants, and they also
allow listeners to participate in experiments in their own
homes at a time of their choosing. Crowdsourced tests
also remove much of the control that researchers have over
their experiments, so thorough quality control must be
performed. A 2013 book chapter on crowdsourcing for
speech synthesis evaluation [25] notes that the number of
papers using crowdsourcing for listening tests had increas-
ed dramatically by that point. The authors describe the
most popular listening test paradigms at this time (SUS
transcription, MOS for naturalness, and pairwise compar-
isons; we also begin to see references to listening tests
measuring speaker similarity, expressivity, and speaking
style) and best practices for crowdsourcing them, as well as
lessons learned from their own experiences (for example,
they recommend discarding a listener’s first three answers
since these fall into the listener’s learning or calibration
phase) and ways to filter out inattentive listeners (e.g., by
including some “gold” samples which should always
receive a high rating). The authors also described listening
tests that did not work well with crowdsourcing, such as
asking listeners to write a free-text description of their
impression of the audio and a more diagnostic test
including categorical choices about potential types of
synthesis errors, which had low listener agreement and was
found to be too complicated.

The trend of introspection into how the speech syn-
thesis field conducts evaluations was continued in 2015
[26] in a study revisiting papers presented at Interspeech
2014. The authors list up the current most popular
evaluation methodologies: MOS, differential MOS
(DMOS; similar to MOS tests but with a reference sample,
and listeners rate how different the test sample is;
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frequently used to rate speaker similarity), preference
tests with and without references, transcription tasks, and
MUSHRA tests [27] (MUltiple Stimuli with Hidden
Reference and Anchor), which had emerged as a popular
evaluation methodology by this time. MUSHRA is a test
originally developed for broadcast audio in which listeners
are presented with several systems’ samples at the same
time and they rate them on a sliding scale from 0-100. A
reference sample of natural speech is included, represent-
ing the upper bound, and the MUSHRA specification also
requires the inclusion of a middle and lower anchor,
typically the reference sample low-pass-filtered at 7kHz
and a 3.5kHz in the case of broadcast audio, although
these are typically excluded in evaluations for synthesized
speech.

In the 2015 study [26], it was observed that although
there are many published guidelines for conducting the
various types of listening tests, in many cases these
guidelines are not followed. Analysis of the 2013 Blizzard
Challenge revealed that at least 30 listeners should
participate in listening tests in order to obtain reliable
results, and the authors list some best practices for
conducting listening tests for synthesized speech and
reporting on their design. Another paper from the following
year [28] observes the overwhelming popularity of MOS
tests for evaluating various types of media, and points out
many shortcomings, such as that MOS is not suitable for
longer clips or for distinguishing fine-grained differences,
the typical labels used for scoring are not perceptually
linear, the typical procedure of removing outliers may
remove completely valid differing opinions, and that the
same final MOS can be obtained even after averaging
some very different distributions of scores, so two systems
may appear to be equivalent when they are actually quite
different. Furthermore, they reiterate the warning that it is
not valid to compare MOS across different studies.

With crowdsourced MOS tests becoming the most
widely used evaluation paradigm for synthesized speech, a
trend of critiques of MOS arose, along with a call to design
more thoughtful, less saturated, and more ecologically
valid evaluations. A 2019 position paper [29] points out
that typical MOS tests evaluate isolated sentences, which
is neither realistic nor especially meaningful, and that the
community should consider contextual appropriateness and
more task-driven evaluations as well as revisiting compre-
hension. A 2016 study [30] reexamined the multiple-choice
comprehension test paradigm, testing natural speech and
statistical parametric speech synthesis (SPSS) in a con-
versational domain. Although listeners reported that the
comprehension task with synthesized speech was more
difficult, the measured comprehension results were not
significantly different between systems, reaffirming that
comprehension tests are saturated and that more sensitive
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methodologies need to be developed. A 2017 study [31]
designed a novel evaluation approach for interactions
with a virtual avatar with different voice synthesis
conditions and compared the outcome to the usual audio-
only evaluation, observing smaller effects in the results of
the interactive study, highlighting the difficulty in design-
ing ecologically-valid evaluation paradigms. Attention also
turned to the choice of listening test material, with a 2019
study [32] comparing MOS evaluations of synthesized
paragraphs and the same sentences in isolation. They found
that synthesized paragraphs were rated lower than the same
sentences in isolation, even though natural speech para-
graphs were rated higher than their isolated sentences,
and that variations in the context provided to listeners
changed their responses. A follow-up study from 2021 [33]
evaluating sentences in isolation and in context found that
the instructions presented to listeners had a strong effect,
with different results obtained by asking them about
“naturalness” vs. “appropriateness.”

One common critique of MOS tests is that “natural-
ness” is not well-defined and that listeners may be
considering different aspects of the audio when they decide
their ratings [29,34,35]. Although it has been observed that
the reliability of MOS tests shows that listeners still
somehow know what to do despite the apparent vagueness
of the task [36], it is a valid point that we may want to
know which facets of naturalness are affecting listeners’
judgments, for more diagnostic purposes. A 2023 study
[35] asked listeners to provide a short free-text response at
the end of the listening test to describe what criteria they
used to assess naturalness, finding that listeners generally
interpreted this as how “human-like” the audio sounded.
Another study from around the same time [37] conducted
a very fine-grained listening test, asking listeners to rate
synthesized samples on over 40 properties in eight broader
categories such as human-likeness and audio quality.
Listeners were also asked to mark audio samples in the
time domain for where points of unnaturalness especially
occur. Listener agreement was found to be lower on these
more fine-grained and well-defined categories compared
to prior studies using basic naturalness MOS; however,
these kinds of in-depth listener studies are an important
step towards better understanding listeners’ behavior and
designing more thoughtful, comprehensive, and diagnosti-
cally-useful evaluations.

A 2018 study [38] advocated for the use of pairwise
comparisons instead of MOS, showing evidence that MOS
may have become saturated around 2013, and emphasizing
the ability of pairwise comparison tests to make finer-
grained distinctions. Two later studies from Interspeech
2023 both independently came to the conclusion that
standard confidence intervals computed from MOS tests
tend to be overly optimistic and that pairwise comparison
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tests are preferable based on empirical studies of real
listening test data. The first of these [39] looked at
replicated MOS and comparison tests and found that the
fact that the same listener rates many stimuli breaks the
independence assumptions that are made when computing
confidence intervals, and that using cluster-based methods
to compute them mitigated this. They also found that the
results of pairwise tests were less influenced by the number
of listeners compared to MOS tests, indicating that they are
preferable to use especially if few listeners are available
or if the synthesis systems under comparison are similar in
quality. The second study [40] demonstrated empirically on
a large-scale MOS dataset that huge amounts of samples,
more than it is realistic to collect, are required in order
to obtain small enough confidence intervals, computed
using various different tail probability methods, to result
in meaningful system rankings using MOS. They also
advocated for the use of pairwise comparisons instead.
Several other studies [34,41-43] revisit the context
dependency of MOS, showing how changing the systems
included in the listening test, scale instruments, and
instructions can affect final MOS results, and that notably
[43], MOS tests as they are typically run have become
saturated and lost their ability to make meaningful
distinctions between current systems, indicating a need
for better evaluation methodologies going forward.

3. AUTOMATIC EVALUATION FOR
SYNTHETIC SPEECH

Despite the relative ease of conducting crowdsourced
listening tests online, especially compared to the days of
scheduling local listeners to come to the lab in person and
record their answers on paper, evaluation is still a bottle-
neck for experimental iteration and development of speech
synthesizers. Many speech and language tasks come with
automatic objective evaluation metrics, such as word error
rate for automatic speech recognition and the BLEU score
[44] for machine translation. In contrast, speech synthesis
still lacks strong and agreed-upon objective evaluation
metrics. Researchers have made efforts to address this gap
by using metrics developed for telephony, finding acoustic
correlates of human evaluations, measuring degradations
compared with a ground-truth audio sample, and using
data-driven machine-learning-based approaches.

Although claims have been made that automatic
evaluation of speech synthesis should be difficult or
impossible, this has not discouraged researchers from
directing efforts toward more objective evaluation method-
ologies. There are several ways to categorize these
methods. First, a model-based method learns a model from
data to make the prediction, while a signal-based metric
does not require learning such a model. Second, an
intrusive (or double-ended) method requires a reference
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signal for comparison, and a non-intrusive, (or reference-
free, single-ended) method does not require a reference.

3.1. Difficulties in Automatic Evaluation of Synthetic
Speech

Objective evaluation of synthesized speech is expected
to be difficult for several reasons. First of all, there is the
so-called “one-to-many” problem —for any given condi-
tion (text, style, environment, etc.), there may be countless
ways to realize it that would be considered correct and
natural. While we may evaluate a synthesized utterance
by comparing it to a ground-truth one, we may be unfairly
penalizing perfectly valid differences in prosody, timing,
and pronunciation. How humans produce and perceive
prosodic variations is also still not well understood [20].

Second, the types of artifacts encountered in synthe-
sized speech, and the types of unnaturalness, are varied
and also fundamentally different from those encountered in
telephony. While noise can be a major cause of degradation
in communication networks, this is typically not an issue
for speech synthesis models that are developed using clean
data, whereas discontinuities arising from concatenation
points in unit selection synthesis, and issues like unnatural
prosody are sources of unnaturalness that are specific to
synthesized speech. It is also unknown whether certain
subjective traits of speech correspond to objectively
measurable components of a signal [29].

Last but not least, listening tests fundamentally collect
information about subjective preferences, which can be
expected to vary based on individual differences or
contextual elements of the test [21]. Calibration to different
listening test contexts would be necessary, but the best
practice is still unknown [28].

3.2. Speech Quality Assessment Metrics from Teleph-
ony

Although there have been many signal-based metrics
for objectively measuring the signal quality of speech that
is transmitted over noisy telecommunication networks, in
this section we will limit the scope to those that have been
adopted for evaluating speech synthesis in particular.

The Mel-cepstral distance (MCD) measure [45] com-
putes the difference between the Mel cepstra of a reference
and test speech sample. The perceptually motivated Mel
cepstrum was hypothesized to be a better match for
subjective ratings than the previously used standard
cepstrum, which was validated by experiments showing
that MCD had better correlations with subjective ratings of
low-bitrate coded speech with simulated channel condi-
tions than cepstral distance. 15 years later, MCD was tested
for evaluating synthesized speech [46] in the context of
facilitating the development of speech synthesizers in new
languages by non-experts. While small differences in delay

have to be accounted for when using MCD for telephony,
the alignment between a ground-truth speech sample and
the corresponding synthesized sample may be completely
different. The authors propose both the use of dynamic
time warping (DTW) to address this, as well as the idea
of using “gold” durations for synthesizing samples to be
evaluated with MCD. While small differences in phoneme
durations are unlikely to affect naturalness ratings, this
approach cannot identify problems with duration modeling.
The authors also point out that MCD is not suitable for
finding problems like discontinuities in the fO contour.
Nevertheless, they found it to be a reasonable proxy for
subjective opinions during development.

The Perceptual Evaluation of Speech Quality (PESQ)
was developed for the objective evaluation of speech over
narrow-band telephone networks and codecs, and stand-
ardized as ITU-T Recommendation P.862 [47]. This metric
was designed to model human perception by estimating
MOS. The PESQ algorithm aligns test and reference
signals taking into account the possibly variable time
delays that can occur in VoIP. Then, measures of absolute
and additive disturbances are computed which are con-
verted into a final score [48]. A third-order polynomial is
fitted to a real MOS dataset to convert the final PESQ score
into a final MOS-like value. Although learning is involved
in the development, we discuss PESQ here because (1) a
third-order polynomial is too simple for PESQ to be
categorized as a model-based approach, and (2) most
researchers use it off-the-shelf without re-training it on
new datasets. It is noted in the recommendation that PESQ
specifically measures the effects of one-way speech
distortion and noise, and that it was not designed to
measure loudness loss, delay, sidetone, echo, or other
impairments.

Despite not being designed for the assessment of TTS,
several works have employed PESQ for this purpose
anyway, to determine its usefulness as a potential objective
measure, with widely varying results. A 2005 study of
single-word synthesis using three diphone synthesizers [49]
found very high Pearson correlations of 0.99 between
PESQ and MOS ratings, and the authors concluded that it
would be possible to use PESQ instead of listening tests
going forward. A later study in 2011 [50] did similar
experiments using data from Blizzard 2008-2010 listening
tests and found very low correlations of 0.17. They
hypothesized that time alignment was the issue and that
the previous study was affected less by that since they had
been using short samples of individual words instead of
full sentences. Nevertheless, they also tried using individ-
ual words cut from the Blizzard samples, but correlations
between PESQ and MOS remained low, indicating that
PESQ is not well-suited for evaluating the larger variety of
synthesis methods represented in the Blizzard data. One
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more 2015 study [51] evaluating PESQ correlations with
Blizzard datasets from 2008-2013 found that the correla-
tions with MOS were close to 0.

The subsequent P.563 recommendation [52,53] was the
first reference-free measurement developed by the ITU,
and the ANIQUE+ [54] reference-free model for narrow-
band telephony was adopted as an ANSI standard shortly
thereafter. Following PESQ, P.563 was designed to model
human perception and predict MOS for narrow-band
telecommunications and is not recommended for other
purposes. P.563 considers three main categories of dis-
tortion: unnaturalness of speech (with separate analysis for
male voices, female voices, and voices that sound strongly
robotic due to distortion), strong additional noise (includ-
ing low static signal-to-noise ratio (SNR) and low
segmental SNR), and other distortions such as interrup-
tions, mutes, and time clipping, in which the algorithm
distinguishes between normal word endings and signal
interruptions. A dominant distortion class is identified and
the distortion measures are combined with distortion-
dependent weightings. These final scores can be converted
into a MOS-type value using a third-order polynomial
calibrated against real MOS data, similar to PESQ. While
P.563 correlates well with MOS for the intended con-
ditions, it was shown to not correlate well when used for
TTS [55]. Nonetheless, there still exist several works using
P.563 as a baseline for comparison [56,57].

The root mean squared error (RMSE) and correlation
of fO are measures that have been used for evaluating
intonation of synthesized speech, with RMSE f0 measuring
the distance between two fO sequences, and the correlation
measuring how well changes in direction of the O contour
in the test sample match a reference sample. As these
measures grew in popularity, it became necessary to verify
their validity in terms of matching well with human
perception of differences in intonation contours. This was
done in a 1999 study [58] that collected listeners’ ratings
of audible similarity or difference in the intonation of pairs
of speech samples and then evaluated their correlations
with RMSE f0, fO correlation, and other measures. While
none of the correlations were very high, RMSE fO matched
best with human ratings.

A 2013 study [59] investigated popular objective and
spectrum-based measures such as MCD, frequency-weight-
ed signal-to-noise ratio (FWS), cepstral distance, log-
likelihood ratio (LLR) based on linear prediction models,
and weighted spectral slope, and their correlations with
MOS ratings on three scales: speaker similarity, natural-
ness, and how much background noise was audible. The
synthesizers under investigation were HMM-based TTS
systems that had been speaker-adapted using either clean
or noisy and enhanced target speaker data. Linear corre-
lations between the measures under study and the MOS
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ratings showed that FWS correlated best with speaker
similarity, MCD was the best correlate of naturalness in the
clean adaptation data condition, and LLR was the best
correlate for all three measures in the noisy adaptation data
scenario.

3.3. Models for Evaluation of Synthetic Speech

Early model-based approaches used methods such as
linear regression and support vector machines (SVMs),
with neural network-based approaches growing in popular-
ity as more and larger MOS-labeled datasets became
available. In more recent years, self-supervised learning
(SSL) based speech models have been proven to be useful
for a huge variety of downstream tasks, including MOS
prediction for synthesized speech.

It is worth mentioning that by 2015, commercial API-
based automatic speech recognition (ASR) models had
been shown to have good correlations with human tran-
scriptions of SUS [60], and this remains a popular method
for evaluating intelligibility of synthesized speech today
[61,62]. Attention errors such as skips and repeats can also
be counted in the case of attention-based neural synthe-
sizers [63]. However, this section will mainly focus on
prediction of more subjective aspects of synthesized speech
such as naturalness and quality.

3.3.1. Early attempts at machine learning based synthetic
speech quality prediction

A study in 2008 [55] was one of the first works that
investigated model-based methods. They first showed that
although the P.563 measure [52,53], which was designed
for narrow-band telephony, had poor correlations with
subjective quality ratings of synthesized speech, several
internal features in fact had higher correlations (with some
dataset dependency), indicating that useful information
was being extracted. They thus proposed an approach using
a regression tree and several of the internal P.563 features
that were determined to be informative.

A follow-up study in 2010 [64] investigated different
combinations of three sets of features for predicting
subjective opinions: internal P.563 features, log-likelihoods
from a reference HMM trained on natural speech, and a
large set of over 1,500 general acoustic features such as
ones related to signal duration, formants, intensity, pitch,
and spectrum. Experiments using a linear regression model
revealed that the best correlations (in the range of 0.7-0.8)
with listening test results from Blizzard 2008 [65] and 2009
[66] were obtained when all three types of features were
used.

The same group further investigated whether prosodic
and MFCC-based acoustic features correlated with MOS
on a more challenging Blizzard 2012 dataset [67], which
had an evaluation of synthesized paragraphs in the audio-
book domain [68]. They investigated a set of prosodic and
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micro-prosodic features such as fO mean, standard devia-
tion, dynamics, rhythm parameters, jitter, and shimmer,
as well as a set of MFCC-based features. Using feature
selection methods and SVM classifiers, they found that
the MFCC-based features were more informative than the
prosodic ones, but that once again their combination
produced the best results. In 2015, they continued their
investigations predicting aspects of voice naturalness,
prosody, and intelligibility using large acoustic feature
sets and SVMs, this time introducing a nonlinearity in the
form of a “regular perception range” which is derived for
each quality aspect — this is the range in which correlation
between the acoustic features and the quality rating is
maximized, with values outside of this range hypothesized
to be less perceptually salient and therefore ignored.
Incorporating this nonlinear perceptual regularization into
their SVM prediction pipeline produced correlation coef-
ficients upwards of 0.9, leading the authors to conclude that
nonlinear modeling is necessary for this prediction task.

While the above-mentioned works focused on single-
ended methods, one study [51] developed a double-ended
naturalness prediction method for past Blizzard data based
on demiphone (a cluster of HMM states) level degradations
relative to a reference signal using spectral and fO features,
with warping required to align the durations. They found
that this metric had the added complication that sometimes
there is not a perfect phonemic correspondence between
synthesized and natural speech due to valid pronunciation
variations and optional silences; nevertheless, they were
able to obtain system-level correlations in the 0.8 range
with this approach.

3.3.2. Neural network-based synthetic speech quality
prediction

Deep neural networks (DNNs) have emerged as the
most popular approach for modern classification and
regression tasks in the past decade as the computational
resources and large-scale datasets needed to train them
have become more available. The task of evaluating
synthesized speech has been no exception, with synthesis
challenges providing ample MOS-labeled data.

Scientific challenges focusing on speech synthesis are
naturally suitable sources for training DNN-based speech
quality prediction models, owing to their scale. In addition
to the Blizzard challenge series which focuses on TTS, in
recent years the Voice Conversion Challenge (VCC) series
has also become a popular data source. Founded in 2016
[69] and subsequently run in 2018 [70], 2020 [71], and
2023 [72], the VCC provides a platform for teams to
compete in the task of voice conversion (VC) using shared
datasets and evaluations. The VCC organizers also make
the submitted audio samples and their ratings from
listening tests available, which has been a valuable
resource of large-scale listening test data that has been

widely adopted by researchers building MOS predictors,
with the 2016 and 2018 datasets being especially popular.

Most of the papers described in this section use some or
all of the following evaluation metrics, which have become
standard, at both the utterance level and the system level
(averaging all the ratings for one synthesis system into a
system-level score) to measure how well a predictor can
predict human MOS ratings:

o Root mean squared error (RMSE): The average
difference between actual and predicted MOS values.

e Linear correlation coefficient (LCC): The basic
correlation between actual and predicted MOS values.

e Spearman rank correlation coefficient (SRCC):
Correlations of the rankings of the actual and
predicted MOS values—it may be more useful for
MOS predictors to predict the ranks of systems
correctly than to predict exact MOS values.

o Kendall Tau correlation coefficient (KTAU): Pro-
posed for evaluating MOS predictors [73] because it
measures rank correlations in a manner that is more
robust to outliers.

Perhaps the first effort to attempt using neural networks
for MOS prediction was in 2016 [57]. Several types of
models were applied to the prediction of MOS ratings from
six past years of Blizzard Challenges, with per-year mean
normalization and per-system variance normalization ap-
plied to enable combining the datasets into one large-scale
dataset. They compared linear regression models to neural
networks and a hierarchical approach was used, with a
system-level score being predicted first and then that
prediction being used as a feature for stimulus-level
prediction, based on the observation that system-level
scores were more predictable and the intuition that
knowing the system-level score should be informative for
predicting the score for a single sample generated by that
system. They found that using neural networks for both
prediction stages worked better than linear regression, and
that features extracted from a convolutional neural network
(CNN) improved correlations over using features from
P.563, MFCCs, and cepstral features.

AutoMOS [74] appeared shortly thereafter for the
evaluation of production-grade unit selection synthesizers.
As in prior studies optimizing the cost functions for
concatenative synthesizers, the authors aimed to develop a
metric they could use to better tune their cost functions.
They investigate LSTM-based architectures with some
automated hyperparameter tuning for predicting MOS of
multiple years’ worth of internal listening test datasets of
ratings of several iterations of their US English TTS
system. They found that there was inadvertently some
predictive power of the text in their dataset, with more
common utterance types having higher MOS. They also
began using AutoMOS to tune the development of their
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TTS, and they also suggest that it can be used in the future
to automatically select utterances to include in human
listening tests to make those tests more efficient.

MOSNet [75] was the first attempt to automatically
predict the subjective quality of converted speech. The
methodology was largely based on Quality-Net [76], a
model for subjective assessment of enhanced speech. In the
MOSNet paper, they used the VCC 2018 data to train
CNN, BLSTM, and a combination CNN-BLSTM archi-
tecture with raw magnitude spectrogram input for MOS
prediction, finding that the last one worked the best, with
a system-level SRCC of around 0.9. The VCC evaluations
also contain DMOS ratings for speaker similarity in
addition to MOS ratings for naturalness, so the MOSNet
authors also modified their system to predict speaker
similarity by accepting two input audio samples, a test
sample, and a reference, making MOSNet the first deep
learning based model for both quality and similarity
prediction of voice-converted samples. Their system was
published as open-source code and it was trained on freely-
available data, so it became a popular benchmark system
in subsequent work.

A later study [73] trained the MOSNet architecture on
ASVSpoof 2019 Logical Access data [23] which contains
samples from both TTS and VC, comparing eight different
input representations in addition to the original spectro-
gram input to determine the best one. These included
image-based embeddings of the spectrogram as well as
several x-vector [77] variants designed to extract different
types of information, and it was found that the embeddings
of spectrograms worked well for evaluating TTS systems.
Crucially, they observed that pretrained MOSNets did not
generalize well to new datasets and synthesis systems, and
they recommend retraining MOSNet when switching
datasets.

Some improvements to MOSNet were proposed [78]
including the use of learned global quality tokens (GQT),
inspired by global style tokens for TTS [79] and intended
to reflect the criteria used by listeners in making their
judgments, and an encoding layer that better aggregates
frame-level scores into utterance-level ones by incorporat-
ing information about their distributions. The combination
of the two proposed improvements was shown to improve
MOS prediction on the in-domain VCC 2018 test set, but
the original MOSNet had the best system-level correlations
when testing on VCC 2016 in a cross-dataset condition,
once again revealing the difficulty of cross-domain MOS
prediction.

3.3.3. Listener modeling in synthetic speech evaluation

A technique that has been gaining attention is listener
modeling. In MOS tests, ratings from multiple listeners are
averaged together to get one value representing the quality
of each utterance. This results in datasets that are a fraction
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of the size of the actual number of collected labels. With
the intuition that modeling individual listeners’ ratings
could effectively increase the amount of available training
data and explain variations in the scores, listener-dependent
modeling has emerged as an effective approach to MOS
prediction.

MBNet (Mean-Bias Network) [80] was the first work to
consider the use of per-listener scores for MOS prediction.
They incorporate a mean subnet and a bias subnet that
allows the network to learn the personal preferences of
individual listeners, which can vary widely, in addition to
the averaged scores. The mean subnet predicts the averaged
score similar to previous works, and the bias subnet
predicts the difference between the mean score and an
individual listener’s score, given the listener ID. During
inference, a specific listener ID can be input to predict his
or her rating, or the bias net can be discarded and a
prediction may be generated by the mean net only. Trained
on VCC 2018 and evaluated on both its test set and the
VCC 2016 data, MBNet was shown to improve over the
MOSNet baseline.

LDNet (Listener-Dependent Network) [81] further
proposed several improvements over MBNet. The authors
first hypothesized that the speaker bias can be modeled
using few parameters and made the bias net lightweight.
Instead of discarding the bias net during inference, they
further proposed two inference modes: (1) an “all
listeners” mode, which averages over the predicted
decisions of all of the listeners seen in training, and (2) a
“mean listener” mode, where a “virtual” listener is created
during training whose rating is always the mean score of
a given audio sample. LDNet was shown to outperform
MBNet, with the “mean listener” mode giving the best
results.

DeePMOS (Deep Posterior Mean-Opinion-Score) [82]
estimated a posterior Gaussian distribution of MOS ratings.
This was accomplished by extending MBNet to output a
predicted variance in addition to the mean. This approach
improved MSE and system-level correlations over MBNet,
and also provides more interpretable predictions in the
form of distributions as opposed to point estimates.

3.3.4. SSL-based approaches

In parallel to listener modeling, another technique that
has been gaining more attention is the adaptation of SSL-
based speech models. The application of SSL to speech
was first shown to produce excellent results in speech
recognition [83], and has since become the dominant
approach in almost all speech processing tasks [84]. Using
an SSL-based speech model requires two stages: (1) self-
supervised pre-training on large quantities of unlabeled
speech audio for some pretext task, such as contrastive
learning, as in the case of Wav2vec 2.0 [83], or prediction
of masked regions, as in the case of HuBERT (Hidden-Unit
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Bidirectional Encoder Representations from Transformers)
[85], and (2) appending a task-specific prediction head on
the SSL model and fine-tuning with a downstream labeled
dataset. The representations learned in the first stage have
been shown to have excellent capabilities for a large
variety of speech downstream tasks at many levels, from
phoneme recognition and speaker identification to emotion
recognition and intent classification [86].

In 2021, the first effort to use SSL models for the MOS
prediction task was made [87]. They compared the use of
several different pretrained SSL models as encoders,
followed by attention-based pooling of the output frame-
level vectors, to the use of classical features like MFCCs.
The SSL model parameters get updated during training
with MOS-labeled data along with the rest of the model
parameters. They also incorporated listener modeling in a
similar manner to MBNet. As in previous studies, they
trained on VCC2018 and tested on both VCC2018 and
VCC2016, showing improvements in both cases but
especially in the in-domain scenario.

The SSL-MOS model [88] used an even simpler SSL-
based architecture for MOS prediction without any listener
modeling, trained and evaluated on more diverse datasets
including both voice conversion and TTS samples in
several languages. Compared to MOSNet pretrained on
VCC 2018 and finetuned to a mixed dataset of voice
conversion and TTS samples, the SSL-based MOS pre-
dictors showed superior generalization ability to out-of-
domain datasets with unseen systems, even showing
reasonable correlations in the very challenging zero-shot
condition.

A later work [89] considered that prosody and content
are important to consider when evaluating naturalness.
After collecting a large-scale dataset called SOMOS
(Samsung Open MOS) [90] of MOS ratings for samples
from 200 neural synthesizers with an emphasis on
producing prosodic variations, they proposed a content-
aware approach to MOS prediction. They included pro-
sodic features (phoneme-level fO and duration) and
linguistic features extracted from the known text of the
synthesized utterances (Tacotron [91] encoder outputs,
part-of-speech tags, and BERT [92] embeddings), and
added encoders for these features to several different MOS
predictors trained on SOMOS. Their results demonstrated
that the linguistic features gave improved results for SSL-
MOS, especially at the utterance level, and also that
training converged more quickly when these features were
used.

The authors of a system called RAMP (Retrieval-
Augmented MOS Prediction) [93] considered adding a
non-parametric component to the decoder of an SSL-based
MOS predictor based on k nearest neighbors, consisting
of a datastore of the SSL representations of the training

audio samples and their corresponding MOS scores. A
score can be predicted by retrieving the k nearest neighbors
of an input audio sample and obtaining a distance-weighted
sum of their scores, which can then be fused with the
prediction from the standard decoder. This approach was
shown to improve predictions compared to basic SSL-
MOS, especially for out-of-domain prediction.

The SQuld project [94], while also based on SSL, was
the first massively multilingual research effort towards
MOS prediction for synthesized speech. The basis of their
model is a multi-modal language model pre-trained on a
combination of unlabeled speech, text, and paired text
and speech data. Audio is input as a spectrogram, and the
model is fine-tuned for the MOS prediction task as
regression. They trained it on MOS ratings from over
2000 internal projects for 52 language locales, and the
evaluation data included several “zero-shot” locales that
had been unseen during training. They found some benefits
of transfer learning by including data from many languag-
es, and they also found evidence that these benefits did not
in fact depend on language similarity, indicating that there
are aspects of naturalness that are not language-dependent.
3.3.5. Unsupervised approaches for synthetic speech

quality prediction

The above-mentioned models are trained in a super-
vised manner on datasets with score labels, which can be
difficult to collect. It is therefore of interest to develop
unsupervised approaches that require no MOS-labeled data.
A popular idea is to develop a reference model. This idea
is opposed to the use of a reference sample in double-ended
quality prediction methods, which suffers from two prob-
lems: (1) a reference sample may not always be available,
and (2) the consequence of the “one-to-many” problem is
that perfectly acceptable utterances may be unfairly
penalized if they differ from a reference. In contrast, a
reference model can be viewed as prior knowledge of
natural speech, and it can be trained using a large amount
of natural speech samples. Quality prediction could be
achieved by measuring the distance between the input
speech and natural speech defined by the reference model.
This line of work shares the same concept with unsuper-
vised anomaly detection [95]. Although this approach to
synthesized speech quality prediction has remained largely
under-explored, there have been several studies on this
topic.

In 2008 [56], gender-dependent HMMs were trained on
natural speech and used as reference models. A log-
likelihood measure with respect to these reference models
was then computed from features extracted from synthe-
sized speech. These log-likelihoods were shown to be
useful for predicting several quality dimensions of a P.85-
type listening test, with MOS scores for overall impression,
naturalness, and fluency having the best correlations.
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Correlations on all eight of their rating scales were also
higher with this log-likelihood measure than with P.563
scores. Because this study used “black box” commercial
API-based synthesizers, they did not have access to the
original training data for those systems, so they built their
reference models using speech from different speakers.

A 2013 study [96] built Gaussian mixture models
(GMMs) of the distributions of acoustic feature vectors
extracted from the natural speech of their TTS training
data, vocoded using the same vocoder as their HMM-based
synthesis pipeline, resulting in reference models that are
very well-matched to their target conditions. They mea-
sured the likelihoods of the reference GMMs with respect
to their model’s generated acoustic space and proposed
this as an objective measure of synthesis quality. A later
study [97], inspired by methods in automatic speech
recognition, measured the Kullback-Leibler divergence
between GMMs of natural and synthesized speech from
three different HMM synthesizer variants. They found very
high (over 0.9) correlations with MOS ratings.

Most recently, SpeechLMScore [98] measures the
likelihood of a synthesized audio sample with respect to
a generative speech unit language model which has been
pretrained on natural speech. They evaluated their score’s
correlations with MOS ratings for voice conversion, TTS,
and speech enhancement datasets. In particular, they found
that their approach had better correlations than supervised
systems that were trained on data from mismatched
domains, indicating the superior generalization ability of
this approach.

A paper analyzing the behavior of pretrained SSL
models [99] demonstrated that uncertainty measures de-
rived from these models correlated well with MOS ratings,
without any finetuning for the MOS prediction task. The
authors investigated a variety of different pretrained SSL
models as well as languages of the synthesized speech and
found that in particular, contrastively-pretrained wav2vec
[100] models had the best correlations in all settings. These
experiments demonstrate that even without being exposed
to any synthesized speech data during training, SSL. models
still encode some information corresponding to human
judgments of naturalness.

3.3.6. Beyond predicting quality of synthetic speech

Objective scores for synthesized speech may not only
be used for evaluation, but also for other purposes such as
system development. Introducing models of human per-
ception into the development of speech synthesis engines
can serve to produce synthesized speech that better
matches human preferences. There were many such efforts
during the age of concatenative speech synthesis. Concat-
enative text-to-speech synthesizers typically select speech
units from a database of recordings by optimizing for a
weighted combination of farget cost, which measures how
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well a selected unit matches the desired phonetic sequence
and the target prosodic aspects such as fO and stress, and
join cost, which penalizes unit concatenation boundaries
that are audibly jarring or discontinuous. The main function
of a concatenative synthesizer is to perform a search over
the available speech units using dynamic programming to
find the best sequence of units that optimizes both of these
costs. One of the primary research tasks during the era of
concatenative synthesis was to find the best features to
express these costs, and to find the best way to weigh them.
Much of this research used human listening test data to find
expressions of these costs, especially the join cost, that
best matched human perception.

Many of these works investigated different distance
measures, such as Euclidean distance, the Kullback-Leibler
measure, and Mahalanobis distance, of a variety of acoustic
features that can be extracted from a speech audio signal,
such as Mel-frequency cepstral coefficients (MFCCs),
power spectra, and line spectrum frequencies [101-103],
measuring correlations of the final costs of synthesized
utterances with their human ratings. Cost weights could be
optimized towards the perceptual results using methods
such as downhill simplex [104], and the best ways to
compute and combine costs from individual units were
also considered, with one study [105] finding that the
average cost of a unit sequence correlated better with
human perception than maximum cost, and that the root
mean squared cost, which combines both the average and
the maximum, having the best correlation of all. Later work
[106] considered how to extract common useful knowledge
from differing listener opinions. Naturalness predictions
were also applied in a dialogue system setting [107], where
predictions of naturalness based on the costs reported by
the synthesizer as well as textual features using knowledge
of how often words appeared in the recording script for
their unit selection database were used to choose the
paraphrasing of the generated dialogue that was most likely
to sound the best when realized by the synthesizer.

More recently [108], a Transformer-based TTS model
[109] was trained using a loss function that included a
predicted MOS term. While they did not observe signifi-
cant improvements in the synthesized speech under normal
training conditions when they included this term, they
found that including it gave improvements under low-
resource data scenarios and when using knowledge
distillation to compress the model. Another recent paper
[110] found that using MOS prediction in a loop of
selecting multi-speaker audio data found online and train-
ing synthesizers on that data could help to quickly evaluate
whether a given speaker’s data can improve the synthesis
model or not.

The works mentioned thus far mostly focused on
speech quality assessment. However, certain dimensions in
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synthetic speech can be important, depending on the target
task. For instance, evaluating speaker similarity is essential
in tasks such as VC, voice cloning, or speaker-adaptive
TTS. While models like MOSNet can be modified to model
speaker similarity, designing models tailored to similarity
prediction is an underexplored field.

SVSNet [111] was based on MOSNet and focused on
speaker similarity evaluation. The authors considered that
symmetry needs to be enforced—speaker similarity
ratings should remain the same regardless of the order in
which the test and reference samples are presented. They
achieved this using a co-attention mechanism which can
also handle content and length mismatches between the
two samples, and they also introduced raw waveform input
using a SincNet [112] learnable filterbank in the encoder.
They experimented with both regression- and classifica-
tion-based learning objectives, finding that regression
produced better results and that their proposed system
overall made better speaker similarity predictions than
MOSNet.

Although machine learning models of human judg-
ments of speaker similarity can be trained from listening
test data, it has instead become common practice to use
cosine similarity between speaker embeddings extracted
from an original audio sample from the target speaker and
a synthesized one [113,114] using speaker recognition
models that have been trained on data from thousands of
speakers. An analysis of the results of VCC 2020 [115]
showed high Pearson correlations above 0.8 between x-
vector cosine similarities and listener ratings for speaker
similarity.

Another task related to MOS prediction for synthesized
speech is the task of spoofing detection. Multi-task learning
was considered for MOS prediction for the first time in
2021 [116], where two auxiliary classification tasks were
added to MOSNet: spoofing detection (a binary decision
about whether the speech is synthesized or real), and
spoofing type classification (a multi-class task that identi-
fies which synthesis system was used). They found that
both auxiliary tasks improved prediction on VCC data,
with their combination producing the best results of
system-level SRCCs of around 0.96. Conversely, MOS
prediction was also shown to aid in the task of fake audio
detection [117].

3.3.7. Predicting rank order and pairwise preferences

Critiques of MOS point out that MOS is not absolute,
but highly affected by biases inherent in the entire context
of the listening test. Therefore, MOS values cannot be
meaningfully compared across different studies, and more
importantly, MOS datasets should not be naively com-
bined. This is a crucial limitation as modern neural
networks require very large quantities of labeled training
data. Some prior work [57] combined MOS datasets by

using score normalization, while a later study [118]
allowed the network to learn how to do the normalization
by incorporating a bias-aware loss function that approx-
imates the specific bias of each dataset with a first-order
polynomial function. In effect, absolute errors caused by
the biases are not penalized, and the model learns the
correct ranking order within each dataset. A later study
[119] introduced a loss function that measures the dif-
ferences between the predicted MOS values between all
pairs of samples in a mini-batch compared to the dif-
ferences in their actual values, effectively measuring the
correctness of the ranking of samples in a mini-batch. This
approach was shown to have benefits over a traditional L1
loss, especially in zero-shot and semi-supervised scenarios.

A system called PrefNet [120] outputs the probability
that one waveform would be preferred over another, given
a pair of audio samples that are expected to contain the
same lexical content but may vary in duration. Similar
to SVSNet, it is important that the results are the same
regardless of the order in which the two samples are input;
this requirement is enforced by the use of anti-symmetric
twin neural networks, and the durational alignment prob-
lem is solved using attention and RNNs. They derived
large-scale pairwise preference data from several
MUSHRA tests by labeling pairs of audio with how often
one sample was rated more highly than the other. They
evaluate their model using percent accuracy rather than
correlations; depending on the testing conditions, accura-
cies ranged from about 50-100%. A later work aiming to
predict pairwise preferences [121] derived a dataset of
preference scores from pairs of MOS ratings from the
same listener, intending to reduce listener bias— they
found that this “same-listener” constraint did in fact result
in predictions with better correlations. Their proposed
model predicts utterance scores for two samples, from
which it can produce a preference score and also system-
level scores aggregated over all utterances from a given
system. Experimental results showed significant improve-
ments over a model that only predicts MOS for one input
audio sample.
3.3.8. Learning from speech quality prediction in other

domains

In parallel with research on opinion predictors for
synthesized speech, researchers in speech quality estima-
tion for telephony and speech enhancement have also been
considering the use of deep neural networks for predicting
MOS ratings [122,123] and relative comparisons [124] of
degraded and processed natural speech. Although the types
of degradations that appear in synthesized speech are
different from degradations to natural speech due to noise
and processing, these tasks are nevertheless very related
and it may be beneficial to consider approaches such as
transfer learning.
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In one such effort [125], the authors use a CNN-LSTM
architecture that they had previously developed and trained
for speech quality estimation of degraded natural speech
[126], and then they continued training the model on MOS
datasets for synthesized speech, including Blizzard and
VCC. They considered that it was important to evaluate on
unseen synthesis systems and so they held out some of the
datasets for this purpose, unlike many past works which
use a randomly selected test set. Despite evaluating on
challenging unseen conditions, they nevertheless had best
correlations upwards of 0.9, although interestingly they
also found that ablating the pretraining by replacing it with
randomly-initialized values only degraded the correlations
by a small amount.

4. THE VOICEMOS CHALLENGE 2022

In 2022, we launched the first VoiceMOS Challenge
[127], a shared task on the topic of MOS prediction for
synthesized speech, with the goals of encouraging research
on this topic and of unifying datasets and evaluation to
make direct comparisons between different approaches.
The challenge attracted 22 participating teams from
academia and industry, accelerated research and generated
discussion on this topic.

4.1. Data and Tracks

There were two tracks in the VoiceMOS Challenge
2022, namely the main track and the out-of-domain track.
Table 1 summarizes the datasets.

In 2021, we collected a large-scale dataset of MOS
ratings for synthesized audio samples as well as reference
natural speech samples. We gathered English-language
synthesized audio samples from several past Blizzard
Challenges from 2008-2016 [65,66,128—-131], as well as
from all previous Voice Conversion Challenges [69-71].
We also wanted to include samples from more recent
systems, so we added publicly-shared samples from
ESPnet-TTS [132]. Altogether, we collected samples from
187 different systems (where natural reference speech for
each challenge is considered a “system” as well) and
selected 38 samples per system. We conducted a large-
scale listening test in which we obtained 8 ratings per

Table1 Summary of the main track and out-of-domain
(OOD) track datasets in the VoiceMOS Challenge

2022.
# Samples .
Track  Lang # ratings
Train Dev Test per sample
Main  Eng 4,974 1,066 1,066 8
. Label: 136
0D Chi  yyabel: 540 136 3401017
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sample from 304 unique listeners. This data is described in
detail in our prior work [133] and has been publicly
released’ as the BVCC dataset. This dataset provided the
material for the main track of the challenge. We created
standard training, development, and testing splits of the
data containing 70%, 15%, and 15% of the data respec-
tively, holding out some unseen speakers, synthesis
systems, and listeners in the development and test sets.

Additionally, we wanted to encourage participants to
investigate semi-supervised and unsupervised approaches
to MOS prediction, so we also ran an out-of-domain
(OOD) track in the challenge. We used listening test data
from the Blizzard Challenge 2019 including the original
MOS ratings from the challenge evaluation, and provided
participants with 10% labeled training data and 40%
unlabeled (audio samples only) training data. The remain-
ing data was divided into a 10% development set and a
40% test set, again including unseen systems and listeners
(but not speakers, as all of the samples were from models
trained on one speaker’s data). Blizzard 2019 focused on
Mandarin-language text-to-speech synthesis, so this track
was challenging both in terms of the smaller amount of
labeled training data as well as the language mismatch with
respect to the main track.

The evaluation metrics used in the challenge were
system-level and utterance-level MSE, LCC, SRCC, and
KTAU, and system-level SRCC was chosen as the primary
metric.

4.2. Baselines

Baseline systems were a simple SSL-based MOS
predictor (SSL-MOS) fine-tuned on the BVCC data [88],
LDNet also trained on BVCC [81], and MOSA-Net [123]
which is also trained on BVCC. All three baselines are
publicly available, where participants were given access to
the pretrained models as well as the recipes for training,
finetuning, and making predictions on the challenge data-
sets. These baselines represent a range of approaches, with
MOSA-Net using features extracted from pretrained SSL
models and other sources, SSL-MOS conducting finetuning
of SSL models, and LDNet conducting listener-dependent
modeling.

4.3. Team Approaches

In the following, we reference and briefly summarize
papers released by participants, which either described
their submitted system or provided an analysis.

e The UTMOS (University of Tokyo MOS) system
(T17) [134] was one of the best-performing systems,
scoring the highest on several metrics. It ensembles
strong and weak learners. The strong learners were

Thttps://doi.org/10.5281/zenodo.6572573



modified SSL-MOS systems with additional tech-
niques, including contrastive learning, listener-de-
pendent modeling, and phoneme encodings. The weak
learners were regression models including linear
regression, decision tree, and kernel methods. The
inputs to these weak learners were SSL features.
Finally, the team conducted a listening test with the
unlabeled set in the OOD track and added a listening
test ID to combine multiple datasets from different
listening tests. They were in fact one of the few teams
that made use of the unlabeled set.

The DDOS (Domain adaptive pre-training and Dis-
tribution of Opinion Scores) system (T19) [135]
ranked second in three out of the four system-level
metrics in the main track. In their system, in addition
to regressing to the MOS score, they also modeled the
distribution of the MOS ratings. They also applied
data augmentation by changing the voice pitch. On the
OOD track, they used a domain-adaptive pre-training
technique which reduced MSE. They also provided
zero-shot results on the OOD track.

The ZevoMOS system (T01) [136] was based on SSL-
MOS, but they used two SSL inputs and an ASR
confidence score. Moreover, the SSL models were
first fine-tuned on the FoR dataset [137] to classify
natural and synthetic speech, then fine-tuned on the
BVCC dataset.

The system by JAIST (TO08) [138] was based on
MOSA-Net with two key concepts: an auditory
filterbank and temporal modulation. A temporal
modulation feature on the gammatone filterbank
(TMGF) was concatenated with the HuBERT fea-
tures. They showed that this method could improve
prediction on utterances with a low MOS.

The system from NICT (T11) [139] ranked first in
LCC, SRCC, and KTAU in both the main track
system level metrics and the OOD track utterance
level metrics. They proposed a fusion framework
exploiting seven SSL models. For the OOD track,
they applied semi-supervised learning to the unlabeled
set, which was shown to be very effective.

The system from ByteDance AI-LAB (T20) [140]
ranked 4th in terms of both system- and utterance-
level SRCC. It was based on LDNet, and they
combined the main and OOD track datasets with a
shared encoder and separate decoders. The encoder
was essentially a wav2vec 2.0 model fine-tuned for
phoneme recognition.

MooseNet [141] was based on SSL-MOS, and their
main idea was to apply PLDA. It transformed frame-
by-frame acoustic features into time-invariant features
by global pooling, an operation similar to that used to
compute speaker vectors for speaker recognition
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tasks. Applying PLDA showed improvements com-
pared to the vanilla SSL-MOS.

e A comparison of SSL features and raw acoustic
features like spectrograms was made in [142]. Starting
from LDNet, they showed that combining wav2vec
2.0 and Mel spectrograms or FO values can improve
the performance, implying that there is complemen-
tary information found in raw acoustic features.

e An analysis focused on various factors when fine-
tuning SSL models [143]. Starting from SSL-MOS
based on wav2vec 2.0, they experimented with not
only synthetic speech but also natural speech in noisy
environments and transmitted over communication
networks, and showed that fine-tuning with mixed-
lingual datasets and larger dataset sizes could improve
generalization performance.

o Another analysis focused on the metadata of the
BVCC dataset [144]. They used the SSL-MOS model
and added metadata information. They showed the
amount of error and correlation that can be explained
by metadata predictors such as system and rater
identifiers. They also showed that since there were
often only very few utterances per system in the
development and test sets, utterance-level metrics
were more informative than the system-level ones.

4.4. Lessons Learned

Overall, we observed that finetuning SSL models for
the MOS prediction task is a powerful approach that can
produce predictions with very high correlations with real
listener ratings. However, we observed that predictions for
unseen systems in the OOD track were substantially more
difficult. This is important because this case corresponds
the most with a real-life use case for MOS predictors —
predicting MOS for a system which has not been evaluated
in a listening test before, and therefore for which no MOS
labels already exist. Furthermore, we asked participating
teams to fill out a survey including questions about what
types of tasks they would like to see in future challenges,
and many responses were about including a larger variety
of audio to evaluate, including synthesis in more different
languages, singing synthesis, and noisy and enhanced
speech.

5. THE VOICEMOS CHALLENGE 2023

The outcomes of the first challenge motivated our
design of the 2023 edition of the challenge [145]. We
focused on real-life MOS prediction in a variety of speech
domains. In the 2023 challenge, we did not provide any
MOS-labeled audio samples in two of the target domains,
and listening tests were ongoing at the same time as the
challenge, meaning that team predictions were made before
the actual ground-truth MOS values were known to
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Table 2 Summary of the test phase data for each track
in the VoiceMOS Challenge 2023.

Track  Type Lang  Systems Samples  # ratings
per system per sample

Track la Hub: 21 42

Track 1b TTS Fre Spoke: 17 34 15
Singing In-dom: 25

Track 2 vC "€ Cross-dom: 24 80 6

Track 3 Noisy & 97 20 53
enhanced

anyone. In total, 10 teams participated in this year’s
challenge.

5.1. Data and Tracks

There were three tracks in the VoiceMOS Challenge
2023. Table 2 summarizes the datasets for each track.

We collaborated with the organizers of the Blizzard
Challenge 2023 [146] as well as the Singing Voice
Conversion Challenge 2023 (SVCC) [72] to acquire
synthesized samples from their teams for conducting
MOS prediction by our teams, while the Blizzard and
SVCC listening tests were still ongoing.

The Blizzard Challenge 2023 focused on French text-
to-speech synthesis, with a Hub track of their challenge
providing 51 hours of training data from a single speaker,
and a Spoke track providing 2 hours of data from a
different speaker, intended for speaker adaptation. There-
fore, Track 1 of the VoiceMOS Challenge 2023 was
French TTS, and since the Blizzard listening tests were
conducted separately for their Hub and Spoke tasks, we
likewise divided this track into corresponding Tracks la
and 1b.

Since spoken voice conversion has reached near-human
levels of naturalness [71], in 2023, the VCC organizers
decided to focus on the task of singing voice conversion —
that is, converting a sung audio sample to a different
speaker identity, using either sung (matched) or spoken
(mismatched) reference audio from the target speaker.
Track 2 of the VoiceMOS Challenge 2023 was therefore
singing voice conversion.

There was substantial interest from the participating
VoiceMOS teams in 2022 to expand to noisy and enhanced
speech, and we also noticed many parallel efforts towards
more automatic evaluation methodologies in the speech
synthesis and speech enhancement communities. Consid-
ering that these are similar tasks and that there could be
benefits from more communication and collaboration
between these communities, Track 3 was noisy and
enhanced speech. Unlike the other two tracks, where no
MOS-labeled training data was provided to participants, we
provided the TMHINT-QI [147] dataset as training data,
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with a held-out development set providing evaluation
material for displaying team scores on a leaderboard on
our challenge website during the initial few weeks of the
challenge to encourage early participation and friendly
competition. During the evaluation phase, a separate test
set called the TMHINT-QI2 [148] was curated, with the
same noise generation process, partially different speech
enhancement systems, and completely different raters.

5.2. Baselines

The baseline systems we included were SSL-MOS
[88], which had been the best-performing baseline in the
previous challenge, and UTMOS [134], which was one of
the top team systems from the 2022 challenge that also had
an open-source implementation. We used models that were
pretrained on BVCC as baselines without any additional
development.

5.3. Team Approaches

At the time of writing, only two teams have released
papers describing their systems, so we will briefly
summarize them below.

e The LE-SSL-MOS (Listener-Enhanced Self Super-
vised Learning Mean Opinion Score) system (T06)
[149] showed promising results on all tracks. This was
considered impressive since most teams did well on
one track and performed badly on the other tracks.
There were several key ideas. First, they employed
model ensembling, combining scores for multiple
models. These models include supervised learners,
including a vanilla SSL-MOS model and an SSL-
MOS model enhanced with listener-dependent mod-
eling. They also included unsupervised learners,
where “unsupervised” was defined as not using any
MOS labels during training. These unsupervised
approaches include a fine-tuned SpeechL.MScore
[98] model, as well as ASR confidence scores.

o The SQAT-LD system (Speech Quality Assessment
Transformer) (T03) ranked 4th in Track la, 2nd in
Track 1b, and 1Ist in Track 2 [150]. They also
combined SSL-MOS with listener-dependent model-
ing, where their SSL model was SSAST [151]. They
also proposed to combine the weighted scores of each
frame to better predict the overall score. Their model
was trained on the main and OOD datasets from the
VoiceMOS Challenge 2022, and they also included a
bias-aware loss [118] to enable training on multiple
datasets.

5.4. Lessons Learned

From the system descriptions that the teams submitted,
we found that listener-dependent modeling was more
popular this year, and teams that used a mix of different
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training datasets (BVCC, SOMOS [90], past Blizzard
original data, etc.) also tended to do better. Although we
shared pointers to the training datasets of the Blizzard
Challenge 2023 and Singing Voice Conversion Challenge
2023, as well as other relevant datasets without MOS
labels, no teams made use of those datasets.

We were surprised that many teams had good pre-
diction results for the singing track, especially since none
of the teams reported using any singing data to develop
their systems. We suspect that the domain mismatch
between synthesized singing and speech is not as large as
we had assumed. Furthermore, we also observed that many
teams had large gaps between their results for Tracks la
and 1b, although not in any consistent direction across
teams. Upon investigating the training data for the Blizzard
Hub and Spoke tasks, we observed that the Spoke data
contained audible reverberation whereas the Hub data
did not, which may have been one of the reasons for this
result.

For Track 3, we observed generally higher scores,
where some training data was made available, compared
to the other tracks, where there was not. We also observed
that most teams’ scores for the different tracks are very
different, and no team had high scores on all tracks using
the same model trained on the same data, indicating that
general-purpose MOS prediction can still be considered an
open research problem.

6. FUTURE PROSPECTS AND CHALLENGES

Researchers in speech synthesis have long considered
the best ways to compare and evaluate speech synthesis
methods, and reliable objective evaluation metrics have
been a long sought-after goal. Several decades ago,
listeners visited research laboratories in person to listen
to synthesized samples and transcribe them by hand. Now,
crowdsourced MOS tests can be conducted quickly and
conveniently, and powerful self-supervised speech repre-
sentations and large-scale MOS datasets have brought us
closer to the goal of objective metrics. Predicted MOS
values are already being reported in some TTS and voice
conversion papers as an objective evaluation metric along-
side subjective listening test results [72,152] as well as
other now commonly accepted automatic measures such
as ASR word error rate and cosine similarities of speaker
embeddings. MOS predictors are also being used in
research applications such as in loss functions for training
TTS systems [108], data selection for building TTS models
from found data [110], and to aid in fake audio detection
systems [117].

There have been several studies demonstrating that
MOS tests may have become saturated and lost their ability
to meaningfully differentiate between modern-day synthe-
sizers [38,40,43]. Pairwise comparison tests have been

shown to mitigate this. The testing material can also be
chosen to better highlight differences between systems,
thereby making listening tests more efficient [153], a task
that some have suggested can be facilitated by automatic
quality predictors as well [74].

Zero-shot general-purpose quality prediction of synthe-
sized speech still remains an open research problem, with
calibration to different domains and listening test contexts
remaining a challenge. MOS predictors can be used for
applications where the audio data is from a similar domain
to that with which the predictor was trained; however, what
constitutes “similar enough” still remains an open ques-
tion. Care must be taken when reporting and understanding
objective evaluation results given by MOS predictors, and
we still need to accumulate more knowledge on MOS
predictors and their behavior on different out-of-domain
datasets before we can fully accept them as a replacement
for human listening tests.

With the increasing attention being paid to the prob-
lems with MOS tests and “naturalness” as a target, there is
a growing interest in other evaluation methodologies and
their automation. Pairwise preference predictors are one
step in this direction, and, more generally, objective
evaluation methods that can directly output a ranking of
multiple systems as opposed to MOS values would be
interesting future work. There is also substantial evidence
that MOS as a listening test methodology is no longer
sufficient. It is important to consider more comprehensive
listening test methodologies that consider factors such as
context appropriateness and other aspects of listener
opinions, as well as how we can incorporate these factors
into automated evaluations. Data scarcity will always be an
issue in terms of the availability of MOS-labeled data for
every possible domain, context, or question that we ask
listeners, so unsupervised and semi-supervised methods
are an important future research direction. Methods that
enable the combination of smaller or heterogeneous data-
sets, such as models that learn pairwise predictions or
rankings, will be useful for addressing this as well.
Furthermore, interpretable opinion prediction for synthe-
sized speech remains under-explored —there are many
possible reasons why a listener might assign a sample a low
score, and knowing the reason why a sample’s predicted
quality is low would be very useful from a diagnostic point
of view. This line of research would first require a better
understanding of how listeners assign their ratings, and
studies asking listeners for reasons or explanations for
their ratings have been an important step in this direction.
Conversely, if MOS predictors become very accurate and
interpretable, we can consider using them as psycho-
acoustic tools to better understand human perception of
speech. In the long term, we aim to be able to compre-
hensively model human preferences about synthesized
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speech, including arbitrary aspects of human opinions, and
to be able to use those predictions during model develop-

ment to produce the next generation of more realistic,

diverse, and context-adaptable synthesized speech.
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