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Abstract: Evaluating synthetic speech generated by machines is a complicated process, as it
involves judging along multiple dimensions including naturalness, intelligibility, and whether the
intended purpose is fulfilled. While subjective listening tests conducted with human participants have
been the gold standard for synthetic speech evaluation, its costly process design has also motivated the
development of automated objective evaluation protocols. In this review, we first provide a historical
view of listening test methodologies, from early in-lab comprehension tests to recent large-scale
crowdsourcing mean opinion score (MOS) tests. We then recap the development of automatic
measures, ranging from signal-based metrics to model-based approaches that utilize deep neural
networks or even the latest self-supervised learning techniques. We also describe the VoiceMOS
Challenge series, a scientific event we founded that aims to promote the development of data-driven
synthetic speech evaluation. Finally, we provide insights into unsolved issues in this field as well as
future prospects. This review is expected to serve as an entry point for early academic researchers to
enrich their knowledge in this field, as well as speech synthesis practitioners to catch up on the latest
developments.

Keywords: Synthetic speech evaluation, Mean opinion score, Automatic speech quality prediction,
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1. INTRODUCTION

Synthesized speech, which is artificial speech generated

by a computer, requires evaluation in order to judge

whether it is understandable to listeners, natural-sounding,

well-matched to the target speaker or speaking style, and

generally acceptable for its intended purpose. Evaluation is

also required to judge whether some new synthesis method

is better than a previous one, or whether some new

proposed modification gives an improvement. For as long

as researchers have been developing synthesized speech,

they have also been considering how to evaluate it.

Historically, such evaluation has mainly relied on listening

tests conducted with human listeners. Human opinions are

the gold standard for evaluating synthesized speech

because, after all, it will be humans who will listen to it.

However, such evaluations are very costly and time-

consuming, and researchers have also considered more

automated evaluation methods to streamline the exper-

imental iteration process. From acoustic correlates of

human opinions to signal-processing-based methods de-

veloped for telephony, to machine learning-based ap-

proaches trained on listening test data, researchers have

been considering and testing out these automated evalua-

tion methods to make their experiments more efficient.

This review will outline a history of evaluation for speech

synthesis, including different types of subjective listening

tests and efforts to find suitable objective metrics. We

will also describe our two years of experience running

the VoiceMOS Challenge, a shared task for data-driven

opinion prediction for the quality of synthesized speech.

Finally, we will describe ongoing work in this area as well

as unsolved issues and future prospects.

2. LISTENING TESTS

This section will overview the listening test method-

ologies that have historically been used for synthesized

speech, as well as current popular methodologies. We will

also make note of some critiques of these methodologies

that have arisen. In the case of modular synthesizers which

have a front-end for linguistic processing, each of the
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linguistic processing components (such as text normal-

ization and grapheme-to-phoneme conversion) may have

their own evaluation methodologies, which can be auto-

mated in the presence of sufficient labeled data. However,

evaluations of the linguistic components of speech

synthesizers are outside of the scope of the paper and

we mainly focus on evaluation of the final synthesized

speech.

2.1. 1980s to Early 1990s: Intelligibility and Compre-

hension

During the 1980s and early 1990s, popular approaches

for computerized speech synthesis were rule-based formant

synthesizers and concatenative unit-selection-based syn-

thesizers based on small units such as diphones or groups

of phonemes. The evaluation mainly focused on aspects

related to intelligibility at the phoneme, word, or sentence

level, as well as comprehension at the multi-sentence or

paragraph level.

A 1990 survey paper [1] describes several evaluation

methodologies for speech synthesis focusing on popular

ones in the decade prior, and their advantages and

disadvantages. The authors point out that most evaluations

for synthesized speech at that point focused on intelligi-

bility. They outline three types of evaluations: compara-

tive, which will reveal which synthesis system is best,

diagnostic, which will assist in identifying problems with

a synthesizer, and applied, which will demonstrate how

well-suited the synthesizer is for a particular application.

An example of an applied evaluation is a controlled field

test, in which a synthesizer is evaluated in the real world

in its intended application with real users as the listeners —

it is stated that this kind of test is relatively uncommon,

and how to design ecologically-valid listening tests still

remains an open question.

The Modified Rhyme Test (MRT) [2] is a test

developed for telephony for evaluating intelligibility at

the phoneme level, and it is cited as the most frequently-

used listening test at the time for comparative evaluations

of speech synthesizers in controlled conditions. In an MRT,

listeners hear a monosyllabic word, often in the context of

a carrier sentence, and then they must choose the word that

they heard from a list of six choices which vary by either

the initial or final consonant. The MRT is a variation of the

Diagnostic Rhyme Test (DRT) [3], which only presents

listeners with two possible choices. Positive aspects of the

modified rhyme test are that it is reliable as well as easy

to conduct. Its drawbacks are that the test scenario is

unrealistic compared to actual use cases for synthesized

speech, and this limited scenario results in artificially high

scores. The multiple-choice paradigm also does not reveal

confusions that listeners may have made that are not

presented among the six choices. Furthermore, consonant

clusters are not evaluated in a standard MRT. Therefore,

variations of the MRT were sometimes deployed, such as

ones making use of open responses [4] and ones including

consonant clusters in the testing material [5].

A 1993 paper [6] describes several perceptual tests

used by Bell Labs that have a more diagnostic focus. Their

in-house speech synthesis system was a concatenative one

using a database of units ranging in length from one to five

phonemes, and they evaluated two versions of this along

with the commercial DECtalk formant synthesizer and

natural speech. Their motivations were to evaluate the

coverage of their dataset and to identify bad units that may

require re-recording. This paper describes how listening

tests were typically conducted at the time — listeners were

recruited from the local area near the office and in most

cases they were not only unfamiliar with speech synthesis

but also with computers in general and they did not have

keyboard typing skills. So, listeners either used very simple

user interfaces that only required pushing one or two

buttons to make a choice, or else they were asked to write

down what they heard using pencil and paper in the case of

transcription tasks, and their responses would be entered

into a computer later on. They conducted a word pointing

test for detecting bad units, in which listeners point at

words in a sentence where they hear problems and rate

their severity; a minimal pairs intelligibility test, similar

to the DRT except using word lists that cover more types

of sounds such as vowels, consonant clusters, and multi-

syllabic words; an orthographic name transcription task

in which listeners write down proper names that they hear;

quality ratings scores with problem categorization,

similar to quality MOS but with a follow-up question

asking listeners to choose a category of the problem they

identify with the audio if their rating is low; and paired

comparisons with certainty ratings, a modification of

a simple pairwise comparison test where listeners also

indicate the strength of their preference on a 1-6 scale. The

authors reiterate that ratings of synthesized speech are

inherently context-sensitive and therefore cannot be mean-

ingfully compared across tests.

Beyond the phoneme level, word-level and sentence-

level intelligibility of synthesized speech can be assessed

by way of a transcription task that asks listeners to write

down the word or sentence that they hear. Results are

reported in terms of the percentage of words that were

correctly identified. The testing material can consist of

meaningful sentences that are chosen to have good cover-

age of the sounds of the language or to be representative of

the target use case for the synthesizer, or semantically-

unpredictable sentences (SUS) [7], which are grammati-

cally-correct nonsense sentences. Although meaningful

sentences better reflect a real-life use case, testing with

SUS can give a more realistic picture of the intelligibility
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of the systems under comparison because the effect of

contextual clues is removed. Intelligibility tests using

SUS are more rigorous and provide a kind of ‘‘lower

bound’’ [8] for how well the system can be expected to be

understood.

A 1980 paper [8] on the evaluation of the MITalk rule-

based formant synthesizer critiques past (uncited) synthesis

studies for focusing too much on intelligibility and not

enough on comprehension, a listener’s ability to understand

and retain information from what they heard. In addition to

conducting MRT tests and tests for word recognition in a

sentence using both meaningful sentences and SUS, they

also conducted a listening comprehension test in which

listeners heard narrative passages and several multiple-

choice questions about their contents, based on stand-

ardized reading comprehension tests. They compared

listening to synthesized speech to both listening to natural

speech and reading the passage to measure the compre-

hension differences in each case. However, this same

study shows that this kind of comprehension test is already

saturated, that is, it is not sensitive enough to reveal

differences between natural and synthesized speech. A

decade later, the 1990 survey paper notes that paragraph-

level comprehension evaluations still remain scarce despite

this being an important and realistic use case for speech

synthesizers. Sentence-level intelligibility and comprehen-

sion can also be measured using a sentence verification

task, in which listeners have to quickly decide whether a

sentence is factually correct or not, and results can be

measured in terms of listener latency and accuracy.

The 1990 survey paper gives a short overview of

listening tests that evaluate intonation, which were starting

to receive some attention at the time but were not yet as

widely used as intelligibility tests. These include pairwise

comparison tests in which listeners hear the same sentence

realized by two different synthesizers and choose which

one they prefer, Mean Opinion Score tests (MOS) [9]

in which listeners rate an audio sample on an Absolute

Category Rating (ACR) scale for some characteristic of the

audio such as its naturalness, and magnitude estimation

tests, in which listeners assign numbers of their own

choosing to describe their perception of the magnitude of

some aspect of the audio and their answers are normalized

later [10]. Pairwise comparison tests can reveal fine-

grained differences between systems as listeners are forced

to make direct comparisons, and the human auditory

system has a better ability to make comparisons rather than

absolute judgments [11]; however, pairwise comparison

tests are not well-suited for longer passages and they don’t

scale well to a large number of synthesizers as generally

all pairs must be compared. MOS tests have become very

popular, which will be discussed further in later sections.

The magnitude estimation test was found to give unreliable

results [10] and has not caught on as a major evaluation

paradigm for speech synthesis.

As the MOS testing paradigm was gathering some

interest for speech synthesis by this point, researchers

started to consider the best ways to use it. A 1992 study

[10] investigated two aspects of listening test design in the

evaluation of four unnamed Swedish synthesizers. First, the

granularity of the rating scale was evaluated by comparing

a standard 5-point scale to an 11-point scale with half-point

increments. Next, the question of which which systems

to include in the listening test ‘‘context’’ was also

addressed — they considered a ‘‘narrow’’ context where

listeners only hear the four synthesizers, a middle context

where natural speech is added, and a wide context where

a low-quality reference is also included in the form of

natural speech distorted with noise. Their results showed

that increasing the listening test context reduced the scores

that listeners gave to the synthesis systems in both the

‘‘middle’’ and ‘‘wide’’ context cases, and that scores also

became reduced and more compressed in the case of the

11-point rating scale compared to the 5-point scale. These

early results demonstrate that MOS is relative, not

absolute, and depends on the testing materials and interface

provided to the listeners.

2.2. Mid-1990s and 2000s: Naturalness, Intelligibility,

and Efforts to Standardize

As the storage capacity of computers improved,

concatenative synthesizers were developed to make use

of larger databases from which longer units could be

selected. With the improved quality of speech synthesis,

evaluation during this era shifted from focusing mainly on

intelligibility to including a more comprehensive evalua-

tion of naturalness and prosodic factors. Efforts to develop

standards for evaluating synthesized speech also increased,

as did some introspection by researchers in the field as to

whether evaluations are being conducted in a valid way or

if improvements could be made.

The 1994 ITU-T Recommendation P.85 [12] represents

an early effort to develop a recommended evaluation

protocol specifically for synthesized speech. Based on the

ITU-T Rec. P.80 [13] developed for telephony, this

specification recommends using a set of ACR-based

questions for different aspects of listener opinion such as

overall impression, self-reported listening effort, articula-

tion, and a final binary question about whether the voice is

acceptable. Listeners conduct the ACR part of the test after

an initial round of testing for comprehension of the same

audio material, but P.85 gives no recommendation about

how to use the results of this part of the test, indicating that

comprehension is considered necessary but is still not a

main focus. P.85 also outlines some standardization details,

such as that at least 5 different synthesis systems should
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be included in the test, audio samples should range from

10–30 seconds in duration, a training session should be

provided for listeners, and one listening session should

range from 40–60 minutes. A 1996 paper [14] provides

similarly detailed recommendations for running SUS-based

transcription tests, recommending the use of several

different sentence types that generalize well across Euro-

pean languages, using short and common words. In 2000,

guidelines were published [15] for evaluating Japanese

synthesizers, focusing on intelligibility at the syllable,

word, and sentence level, and overall quality, with

recommendations to ask listeners about rhythm, intonation,

and overall suitability.

A 2002 study of the reliability of P.85 [16] noted that,

eight years later, P.85 had not seen much adoption,

possibly because it seems complicated to run and is not

embedded in a real task. They evaluated six different

commercial English concatenative synthesizers using both

the P.85 paradigm and a simple pairwise test. They aimed

to test the effect of genre (domain) by including material

from four different domains, and of listening session, by

bringing back the same group of listeners one week later

to repeat the same test. The authors found very strong

correlations across several of the different P.85 rating

scales, indicating that they may not really be testing

different factors and therefore the complexity of P.85 tests

may not in fact be worthwhile. They found a significant

effect of genre, although system rankings did not change.

Results were found to be very consistent across sessions.

The only scales that differed significantly across sessions

were ‘‘listening effort’’ and ‘‘comprehension problems,’’

which had differences indicating that listeners had an easier

time listening and comprehending during the second

session and that there was a learning effect. The pairwise

test gave almost the same rankings of systems, with less

variability, and with more significant differences being

revealed between systems with the same number of

listeners. Another study from four years later [17]

comparing P.85 to more commonly-used SUS tests for

intelligibility and MOS tests for naturalness found that

P.85 was not suitable for measuring intelligibility, with

SUS tests being more rigorous and producing more useful

results. However, contrary to the previous study, they

found that the P.85 scales were not all correlated, and P.85

could provide a much more nuanced and informative

picture of the naturalness and overall quality of a system.

They attribute this different result to the fact that

synthesized speech had improved substantially in the

intervening years and that listeners were able to identify

more subtle differences between the systems.

In 1997, a questionnaire was sent out to researchers in

the field of speech synthesis, and the results were reported

[18]. 16 researchers from around the world responded to

questions about which listening test methods they knew

about, and which ones they had actually used, revealing

that pairwise comparison tests had the most users, and

DRT/MRT tests, comprehension tests, and MOS were

also well-known and used. They also collected free-text

opinions and found that researchers were aware that there

are plenty of choices for listening tests, but it would be

useful to have some kind of guidelines for which test(s) to

choose or adapt for a given case.

In 2005, the first Blizzard Challenge was held [19] to

compare corpus-based text-to-speech synthesis techniques

using standardized datasets and evaluations. The Blizzard

Challenge has run almost every year since, and it has

been an important initiative for documenting the progress

of speech synthesis research. Inspired by the benefits of

standardized datasets and evaluation metrics in the speech

recognition community, the challenge was developed to

provide a common ground for comparing different syn-

thesis techniques. As there is no obvious ‘‘best’’ evaluation

for synthesized speech, the challenge organizers chose to

run a variety of listening tests, namely MOS and sentence

transcriptions of both SUS and carrier sentences containing

words from MRT/DRT word lists. This first edition of the

challenge drew six participating teams from three con-

tinents, and evaluations were conducted online via the

Blizzard homepage, with participants being recruited

through word of mouth from communities of speech

experts, volunteers, and US undergraduate students. MOS

tests and SUS transcription tasks continued to be used in

every subsequent Blizzard challenge, with tests for speaker

similarity being added in later editions on the recommen-

dation of the 2005 organizers. The evaluation method-

ologies set forth by the Blizzard organizers have set a

strong precedent for speech synthesis evaluation.

Although evaluations for naturalness and intelligibility

had become standard by this point, a 2007 book chapter

[20] predicts that tone of voice, manner of speaking,

emotional expressiveness, and, generally speaking, ‘‘inter-

personal skills’’ will become more important for speech

synthesis in the future, and so we will need to find ways

to evaluate these aspects as well.

Listening tests were very common by this point, and a

2008 review [21] considers the various forms of bias that

should be considered when designing and reporting them.

Three categories of bias are described: biases arising from

affective judgments (e.g., appearance of the testing equip-

ment, expectations, personal preferences, emotions and

mood), response mapping bias arising from the test

design (e.g. stimulus spacing and frequency, perceptually

nonlinear scales, and range-equalizing bias, the inclination

of listeners to try to use the entire range of choices

available to them), and interface bias (e.g., the layout of the

assessment scale and the words chosen for the labels).
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2.3. 2010s to the Present: Crowdsourcing, MOS, and

Critiques

Unit selection-based synthesizers were still widely used

at the start of this time period, and the more flexible and

smaller-footprint statistical parametric speech synthesizers

such as hidden Markov model (HMM) based ones [22] had

also emerged. Currently, neural network-based synthesiz-

ers are dominant, with many commercial systems achiev-

ing very natural-sounding synthesis that cannot always be

identified as computer-generated by listeners [23].

Although listening tests were already being conducted

online in cases such as the Blizzard Challenge, laboratory

tests remained commonplace until crowdsourcing plat-

forms such as Amazon Mechanical Turk�, which launched

in 2005, became popular, and especially after the Crowd-

MOS [24] open-source toolkit for running MOS listening

tests on Mechanical Turk was published in 2011. Crowd-

sourcing platforms remove geographic constraints and

expand the pool of potential participants, and they also

allow listeners to participate in experiments in their own

homes at a time of their choosing. Crowdsourced tests

also remove much of the control that researchers have over

their experiments, so thorough quality control must be

performed. A 2013 book chapter on crowdsourcing for

speech synthesis evaluation [25] notes that the number of

papers using crowdsourcing for listening tests had increas-

ed dramatically by that point. The authors describe the

most popular listening test paradigms at this time (SUS

transcription, MOS for naturalness, and pairwise compar-

isons; we also begin to see references to listening tests

measuring speaker similarity, expressivity, and speaking

style) and best practices for crowdsourcing them, as well as

lessons learned from their own experiences (for example,

they recommend discarding a listener’s first three answers

since these fall into the listener’s learning or calibration

phase) and ways to filter out inattentive listeners (e.g., by

including some ‘‘gold’’ samples which should always

receive a high rating). The authors also described listening

tests that did not work well with crowdsourcing, such as

asking listeners to write a free-text description of their

impression of the audio and a more diagnostic test

including categorical choices about potential types of

synthesis errors, which had low listener agreement and was

found to be too complicated.

The trend of introspection into how the speech syn-

thesis field conducts evaluations was continued in 2015

[26] in a study revisiting papers presented at Interspeech

2014. The authors list up the current most popular

evaluation methodologies: MOS, differential MOS

(DMOS; similar to MOS tests but with a reference sample,

and listeners rate how different the test sample is;

frequently used to rate speaker similarity), preference

tests with and without references, transcription tasks, and

MUSHRA tests [27] (MUltiple Stimuli with Hidden

Reference and Anchor), which had emerged as a popular

evaluation methodology by this time. MUSHRA is a test

originally developed for broadcast audio in which listeners

are presented with several systems’ samples at the same

time and they rate them on a sliding scale from 0–100. A

reference sample of natural speech is included, represent-

ing the upper bound, and the MUSHRA specification also

requires the inclusion of a middle and lower anchor,

typically the reference sample low-pass-filtered at 7 kHz

and a 3.5 kHz in the case of broadcast audio, although

these are typically excluded in evaluations for synthesized

speech.

In the 2015 study [26], it was observed that although

there are many published guidelines for conducting the

various types of listening tests, in many cases these

guidelines are not followed. Analysis of the 2013 Blizzard

Challenge revealed that at least 30 listeners should

participate in listening tests in order to obtain reliable

results, and the authors list some best practices for

conducting listening tests for synthesized speech and

reporting on their design. Another paper from the following

year [28] observes the overwhelming popularity of MOS

tests for evaluating various types of media, and points out

many shortcomings, such as that MOS is not suitable for

longer clips or for distinguishing fine-grained differences,

the typical labels used for scoring are not perceptually

linear, the typical procedure of removing outliers may

remove completely valid differing opinions, and that the

same final MOS can be obtained even after averaging

some very different distributions of scores, so two systems

may appear to be equivalent when they are actually quite

different. Furthermore, they reiterate the warning that it is

not valid to compare MOS across different studies.

With crowdsourced MOS tests becoming the most

widely used evaluation paradigm for synthesized speech, a

trend of critiques of MOS arose, along with a call to design

more thoughtful, less saturated, and more ecologically

valid evaluations. A 2019 position paper [29] points out

that typical MOS tests evaluate isolated sentences, which

is neither realistic nor especially meaningful, and that the

community should consider contextual appropriateness and

more task-driven evaluations as well as revisiting compre-

hension. A 2016 study [30] reexamined the multiple-choice

comprehension test paradigm, testing natural speech and

statistical parametric speech synthesis (SPSS) in a con-

versational domain. Although listeners reported that the

comprehension task with synthesized speech was more

difficult, the measured comprehension results were not

significantly different between systems, reaffirming that

comprehension tests are saturated and that more sensitive�https://www.mturk.com
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methodologies need to be developed. A 2017 study [31]

designed a novel evaluation approach for interactions

with a virtual avatar with different voice synthesis

conditions and compared the outcome to the usual audio-

only evaluation, observing smaller effects in the results of

the interactive study, highlighting the difficulty in design-

ing ecologically-valid evaluation paradigms. Attention also

turned to the choice of listening test material, with a 2019

study [32] comparing MOS evaluations of synthesized

paragraphs and the same sentences in isolation. They found

that synthesized paragraphs were rated lower than the same

sentences in isolation, even though natural speech para-

graphs were rated higher than their isolated sentences,

and that variations in the context provided to listeners

changed their responses. A follow-up study from 2021 [33]

evaluating sentences in isolation and in context found that

the instructions presented to listeners had a strong effect,

with different results obtained by asking them about

‘‘naturalness’’ vs. ‘‘appropriateness.’’

One common critique of MOS tests is that ‘‘natural-

ness’’ is not well-defined and that listeners may be

considering different aspects of the audio when they decide

their ratings [29,34,35]. Although it has been observed that

the reliability of MOS tests shows that listeners still

somehow know what to do despite the apparent vagueness

of the task [36], it is a valid point that we may want to

know which facets of naturalness are affecting listeners’

judgments, for more diagnostic purposes. A 2023 study

[35] asked listeners to provide a short free-text response at

the end of the listening test to describe what criteria they

used to assess naturalness, finding that listeners generally

interpreted this as how ‘‘human-like’’ the audio sounded.

Another study from around the same time [37] conducted

a very fine-grained listening test, asking listeners to rate

synthesized samples on over 40 properties in eight broader

categories such as human-likeness and audio quality.

Listeners were also asked to mark audio samples in the

time domain for where points of unnaturalness especially

occur. Listener agreement was found to be lower on these

more fine-grained and well-defined categories compared

to prior studies using basic naturalness MOS; however,

these kinds of in-depth listener studies are an important

step towards better understanding listeners’ behavior and

designing more thoughtful, comprehensive, and diagnosti-

cally-useful evaluations.

A 2018 study [38] advocated for the use of pairwise

comparisons instead of MOS, showing evidence that MOS

may have become saturated around 2013, and emphasizing

the ability of pairwise comparison tests to make finer-

grained distinctions. Two later studies from Interspeech

2023 both independently came to the conclusion that

standard confidence intervals computed from MOS tests

tend to be overly optimistic and that pairwise comparison

tests are preferable based on empirical studies of real

listening test data. The first of these [39] looked at

replicated MOS and comparison tests and found that the

fact that the same listener rates many stimuli breaks the

independence assumptions that are made when computing

confidence intervals, and that using cluster-based methods

to compute them mitigated this. They also found that the

results of pairwise tests were less influenced by the number

of listeners compared to MOS tests, indicating that they are

preferable to use especially if few listeners are available

or if the synthesis systems under comparison are similar in

quality. The second study [40] demonstrated empirically on

a large-scale MOS dataset that huge amounts of samples,

more than it is realistic to collect, are required in order

to obtain small enough confidence intervals, computed

using various different tail probability methods, to result

in meaningful system rankings using MOS. They also

advocated for the use of pairwise comparisons instead.

Several other studies [34,41–43] revisit the context

dependency of MOS, showing how changing the systems

included in the listening test, scale instruments, and

instructions can affect final MOS results, and that notably

[43], MOS tests as they are typically run have become

saturated and lost their ability to make meaningful

distinctions between current systems, indicating a need

for better evaluation methodologies going forward.

3. AUTOMATIC EVALUATION FOR
SYNTHETIC SPEECH

Despite the relative ease of conducting crowdsourced

listening tests online, especially compared to the days of

scheduling local listeners to come to the lab in person and

record their answers on paper, evaluation is still a bottle-

neck for experimental iteration and development of speech

synthesizers. Many speech and language tasks come with

automatic objective evaluation metrics, such as word error

rate for automatic speech recognition and the BLEU score

[44] for machine translation. In contrast, speech synthesis

still lacks strong and agreed-upon objective evaluation

metrics. Researchers have made efforts to address this gap

by using metrics developed for telephony, finding acoustic

correlates of human evaluations, measuring degradations

compared with a ground-truth audio sample, and using

data-driven machine-learning-based approaches.

Although claims have been made that automatic

evaluation of speech synthesis should be difficult or

impossible, this has not discouraged researchers from

directing efforts toward more objective evaluation method-

ologies. There are several ways to categorize these

methods. First, a model-based method learns a model from

data to make the prediction, while a signal-based metric

does not require learning such a model. Second, an

intrusive (or double-ended) method requires a reference
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signal for comparison, and a non-intrusive, (or reference-

free, single-ended) method does not require a reference.

3.1. Difficulties in Automatic Evaluation of Synthetic

Speech

Objective evaluation of synthesized speech is expected

to be difficult for several reasons. First of all, there is the

so-called ‘‘one-to-many’’ problem — for any given condi-

tion (text, style, environment, etc.), there may be countless

ways to realize it that would be considered correct and

natural. While we may evaluate a synthesized utterance

by comparing it to a ground-truth one, we may be unfairly

penalizing perfectly valid differences in prosody, timing,

and pronunciation. How humans produce and perceive

prosodic variations is also still not well understood [20].

Second, the types of artifacts encountered in synthe-

sized speech, and the types of unnaturalness, are varied

and also fundamentally different from those encountered in

telephony. While noise can be a major cause of degradation

in communication networks, this is typically not an issue

for speech synthesis models that are developed using clean

data, whereas discontinuities arising from concatenation

points in unit selection synthesis, and issues like unnatural

prosody are sources of unnaturalness that are specific to

synthesized speech. It is also unknown whether certain

subjective traits of speech correspond to objectively

measurable components of a signal [29].

Last but not least, listening tests fundamentally collect

information about subjective preferences, which can be

expected to vary based on individual differences or

contextual elements of the test [21]. Calibration to different

listening test contexts would be necessary, but the best

practice is still unknown [28].

3.2. Speech Quality Assessment Metrics from Teleph-

ony

Although there have been many signal-based metrics

for objectively measuring the signal quality of speech that

is transmitted over noisy telecommunication networks, in

this section we will limit the scope to those that have been

adopted for evaluating speech synthesis in particular.

The Mel-cepstral distance (MCD) measure [45] com-

putes the difference between the Mel cepstra of a reference

and test speech sample. The perceptually motivated Mel

cepstrum was hypothesized to be a better match for

subjective ratings than the previously used standard

cepstrum, which was validated by experiments showing

that MCD had better correlations with subjective ratings of

low-bitrate coded speech with simulated channel condi-

tions than cepstral distance. 15 years later, MCD was tested

for evaluating synthesized speech [46] in the context of

facilitating the development of speech synthesizers in new

languages by non-experts. While small differences in delay

have to be accounted for when using MCD for telephony,

the alignment between a ground-truth speech sample and

the corresponding synthesized sample may be completely

different. The authors propose both the use of dynamic

time warping (DTW) to address this, as well as the idea

of using ‘‘gold’’ durations for synthesizing samples to be

evaluated with MCD. While small differences in phoneme

durations are unlikely to affect naturalness ratings, this

approach cannot identify problems with duration modeling.

The authors also point out that MCD is not suitable for

finding problems like discontinuities in the f0 contour.

Nevertheless, they found it to be a reasonable proxy for

subjective opinions during development.

The Perceptual Evaluation of Speech Quality (PESQ)

was developed for the objective evaluation of speech over

narrow-band telephone networks and codecs, and stand-

ardized as ITU-T Recommendation P.862 [47]. This metric

was designed to model human perception by estimating

MOS. The PESQ algorithm aligns test and reference

signals taking into account the possibly variable time

delays that can occur in VoIP. Then, measures of absolute

and additive disturbances are computed which are con-

verted into a final score [48]. A third-order polynomial is

fitted to a real MOS dataset to convert the final PESQ score

into a final MOS-like value. Although learning is involved

in the development, we discuss PESQ here because (1) a

third-order polynomial is too simple for PESQ to be

categorized as a model-based approach, and (2) most

researchers use it off-the-shelf without re-training it on

new datasets. It is noted in the recommendation that PESQ

specifically measures the effects of one-way speech

distortion and noise, and that it was not designed to

measure loudness loss, delay, sidetone, echo, or other

impairments.

Despite not being designed for the assessment of TTS,

several works have employed PESQ for this purpose

anyway, to determine its usefulness as a potential objective

measure, with widely varying results. A 2005 study of

single-word synthesis using three diphone synthesizers [49]

found very high Pearson correlations of 0.99 between

PESQ and MOS ratings, and the authors concluded that it

would be possible to use PESQ instead of listening tests

going forward. A later study in 2011 [50] did similar

experiments using data from Blizzard 2008–2010 listening

tests and found very low correlations of 0.17. They

hypothesized that time alignment was the issue and that

the previous study was affected less by that since they had

been using short samples of individual words instead of

full sentences. Nevertheless, they also tried using individ-

ual words cut from the Blizzard samples, but correlations

between PESQ and MOS remained low, indicating that

PESQ is not well-suited for evaluating the larger variety of

synthesis methods represented in the Blizzard data. One
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more 2015 study [51] evaluating PESQ correlations with

Blizzard datasets from 2008–2013 found that the correla-

tions with MOS were close to 0.

The subsequent P.563 recommendation [52,53] was the

first reference-free measurement developed by the ITU,

and the ANIQUE+ [54] reference-free model for narrow-

band telephony was adopted as an ANSI standard shortly

thereafter. Following PESQ, P.563 was designed to model

human perception and predict MOS for narrow-band

telecommunications and is not recommended for other

purposes. P.563 considers three main categories of dis-

tortion: unnaturalness of speech (with separate analysis for

male voices, female voices, and voices that sound strongly

robotic due to distortion), strong additional noise (includ-

ing low static signal-to-noise ratio (SNR) and low

segmental SNR), and other distortions such as interrup-

tions, mutes, and time clipping, in which the algorithm

distinguishes between normal word endings and signal

interruptions. A dominant distortion class is identified and

the distortion measures are combined with distortion-

dependent weightings. These final scores can be converted

into a MOS-type value using a third-order polynomial

calibrated against real MOS data, similar to PESQ. While

P.563 correlates well with MOS for the intended con-

ditions, it was shown to not correlate well when used for

TTS [55]. Nonetheless, there still exist several works using

P.563 as a baseline for comparison [56,57].

The root mean squared error (RMSE) and correlation

of f0 are measures that have been used for evaluating

intonation of synthesized speech, with RMSE f0 measuring

the distance between two f0 sequences, and the correlation

measuring how well changes in direction of the f0 contour

in the test sample match a reference sample. As these

measures grew in popularity, it became necessary to verify

their validity in terms of matching well with human

perception of differences in intonation contours. This was

done in a 1999 study [58] that collected listeners’ ratings

of audible similarity or difference in the intonation of pairs

of speech samples and then evaluated their correlations

with RMSE f0, f0 correlation, and other measures. While

none of the correlations were very high, RMSE f0 matched

best with human ratings.

A 2013 study [59] investigated popular objective and

spectrum-based measures such as MCD, frequency-weight-

ed signal-to-noise ratio (FWS), cepstral distance, log-

likelihood ratio (LLR) based on linear prediction models,

and weighted spectral slope, and their correlations with

MOS ratings on three scales: speaker similarity, natural-

ness, and how much background noise was audible. The

synthesizers under investigation were HMM-based TTS

systems that had been speaker-adapted using either clean

or noisy and enhanced target speaker data. Linear corre-

lations between the measures under study and the MOS

ratings showed that FWS correlated best with speaker

similarity, MCD was the best correlate of naturalness in the

clean adaptation data condition, and LLR was the best

correlate for all three measures in the noisy adaptation data

scenario.

3.3. Models for Evaluation of Synthetic Speech

Early model-based approaches used methods such as

linear regression and support vector machines (SVMs),

with neural network-based approaches growing in popular-

ity as more and larger MOS-labeled datasets became

available. In more recent years, self-supervised learning

(SSL) based speech models have been proven to be useful

for a huge variety of downstream tasks, including MOS

prediction for synthesized speech.

It is worth mentioning that by 2015, commercial API-

based automatic speech recognition (ASR) models had

been shown to have good correlations with human tran-

scriptions of SUS [60], and this remains a popular method

for evaluating intelligibility of synthesized speech today

[61,62]. Attention errors such as skips and repeats can also

be counted in the case of attention-based neural synthe-

sizers [63]. However, this section will mainly focus on

prediction of more subjective aspects of synthesized speech

such as naturalness and quality.

3.3.1. Early attempts at machine learning based synthetic

speech quality prediction

A study in 2008 [55] was one of the first works that

investigated model-based methods. They first showed that

although the P.563 measure [52,53], which was designed

for narrow-band telephony, had poor correlations with

subjective quality ratings of synthesized speech, several

internal features in fact had higher correlations (with some

dataset dependency), indicating that useful information

was being extracted. They thus proposed an approach using

a regression tree and several of the internal P.563 features

that were determined to be informative.

A follow-up study in 2010 [64] investigated different

combinations of three sets of features for predicting

subjective opinions: internal P.563 features, log-likelihoods

from a reference HMM trained on natural speech, and a

large set of over 1,500 general acoustic features such as

ones related to signal duration, formants, intensity, pitch,

and spectrum. Experiments using a linear regression model

revealed that the best correlations (in the range of 0.7–0.8)

with listening test results from Blizzard 2008 [65] and 2009

[66] were obtained when all three types of features were

used.

The same group further investigated whether prosodic

and MFCC-based acoustic features correlated with MOS

on a more challenging Blizzard 2012 dataset [67], which

had an evaluation of synthesized paragraphs in the audio-

book domain [68]. They investigated a set of prosodic and
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micro-prosodic features such as f0 mean, standard devia-

tion, dynamics, rhythm parameters, jitter, and shimmer,

as well as a set of MFCC-based features. Using feature

selection methods and SVM classifiers, they found that

the MFCC-based features were more informative than the

prosodic ones, but that once again their combination

produced the best results. In 2015, they continued their

investigations predicting aspects of voice naturalness,

prosody, and intelligibility using large acoustic feature

sets and SVMs, this time introducing a nonlinearity in the

form of a ‘‘regular perception range’’ which is derived for

each quality aspect — this is the range in which correlation

between the acoustic features and the quality rating is

maximized, with values outside of this range hypothesized

to be less perceptually salient and therefore ignored.

Incorporating this nonlinear perceptual regularization into

their SVM prediction pipeline produced correlation coef-

ficients upwards of 0.9, leading the authors to conclude that

nonlinear modeling is necessary for this prediction task.

While the above-mentioned works focused on single-

ended methods, one study [51] developed a double-ended

naturalness prediction method for past Blizzard data based

on demiphone (a cluster of HMM states) level degradations

relative to a reference signal using spectral and f0 features,

with warping required to align the durations. They found

that this metric had the added complication that sometimes

there is not a perfect phonemic correspondence between

synthesized and natural speech due to valid pronunciation

variations and optional silences; nevertheless, they were

able to obtain system-level correlations in the 0.8 range

with this approach.

3.3.2. Neural network-based synthetic speech quality

prediction

Deep neural networks (DNNs) have emerged as the

most popular approach for modern classification and

regression tasks in the past decade as the computational

resources and large-scale datasets needed to train them

have become more available. The task of evaluating

synthesized speech has been no exception, with synthesis

challenges providing ample MOS-labeled data.

Scientific challenges focusing on speech synthesis are

naturally suitable sources for training DNN-based speech

quality prediction models, owing to their scale. In addition

to the Blizzard challenge series which focuses on TTS, in

recent years the Voice Conversion Challenge (VCC) series

has also become a popular data source. Founded in 2016

[69] and subsequently run in 2018 [70], 2020 [71], and

2023 [72], the VCC provides a platform for teams to

compete in the task of voice conversion (VC) using shared

datasets and evaluations. The VCC organizers also make

the submitted audio samples and their ratings from

listening tests available, which has been a valuable

resource of large-scale listening test data that has been

widely adopted by researchers building MOS predictors,

with the 2016 and 2018 datasets being especially popular.

Most of the papers described in this section use some or

all of the following evaluation metrics, which have become

standard, at both the utterance level and the system level

(averaging all the ratings for one synthesis system into a

system-level score) to measure how well a predictor can

predict human MOS ratings:

. Root mean squared error (RMSE): The average

difference between actual and predicted MOS values.

. Linear correlation coefficient (LCC): The basic

correlation between actual and predicted MOS values.

. Spearman rank correlation coefficient (SRCC):

Correlations of the rankings of the actual and

predicted MOS values — it may be more useful for

MOS predictors to predict the ranks of systems

correctly than to predict exact MOS values.

. Kendall Tau correlation coefficient (KTAU): Pro-

posed for evaluating MOS predictors [73] because it

measures rank correlations in a manner that is more

robust to outliers.

Perhaps the first effort to attempt using neural networks

for MOS prediction was in 2016 [57]. Several types of

models were applied to the prediction of MOS ratings from

six past years of Blizzard Challenges, with per-year mean

normalization and per-system variance normalization ap-

plied to enable combining the datasets into one large-scale

dataset. They compared linear regression models to neural

networks and a hierarchical approach was used, with a

system-level score being predicted first and then that

prediction being used as a feature for stimulus-level

prediction, based on the observation that system-level

scores were more predictable and the intuition that

knowing the system-level score should be informative for

predicting the score for a single sample generated by that

system. They found that using neural networks for both

prediction stages worked better than linear regression, and

that features extracted from a convolutional neural network

(CNN) improved correlations over using features from

P.563, MFCCs, and cepstral features.

AutoMOS [74] appeared shortly thereafter for the

evaluation of production-grade unit selection synthesizers.

As in prior studies optimizing the cost functions for

concatenative synthesizers, the authors aimed to develop a

metric they could use to better tune their cost functions.

They investigate LSTM-based architectures with some

automated hyperparameter tuning for predicting MOS of

multiple years’ worth of internal listening test datasets of

ratings of several iterations of their US English TTS

system. They found that there was inadvertently some

predictive power of the text in their dataset, with more

common utterance types having higher MOS. They also

began using AutoMOS to tune the development of their
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TTS, and they also suggest that it can be used in the future

to automatically select utterances to include in human

listening tests to make those tests more efficient.

MOSNet [75] was the first attempt to automatically

predict the subjective quality of converted speech. The

methodology was largely based on Quality-Net [76], a

model for subjective assessment of enhanced speech. In the

MOSNet paper, they used the VCC 2018 data to train

CNN, BLSTM, and a combination CNN-BLSTM archi-

tecture with raw magnitude spectrogram input for MOS

prediction, finding that the last one worked the best, with

a system-level SRCC of around 0.9. The VCC evaluations

also contain DMOS ratings for speaker similarity in

addition to MOS ratings for naturalness, so the MOSNet

authors also modified their system to predict speaker

similarity by accepting two input audio samples, a test

sample, and a reference, making MOSNet the first deep

learning based model for both quality and similarity

prediction of voice-converted samples. Their system was

published as open-source code and it was trained on freely-

available data, so it became a popular benchmark system

in subsequent work.

A later study [73] trained the MOSNet architecture on

ASVSpoof 2019 Logical Access data [23] which contains

samples from both TTS and VC, comparing eight different

input representations in addition to the original spectro-

gram input to determine the best one. These included

image-based embeddings of the spectrogram as well as

several x-vector [77] variants designed to extract different

types of information, and it was found that the embeddings

of spectrograms worked well for evaluating TTS systems.

Crucially, they observed that pretrained MOSNets did not

generalize well to new datasets and synthesis systems, and

they recommend retraining MOSNet when switching

datasets.

Some improvements to MOSNet were proposed [78]

including the use of learned global quality tokens (GQT),

inspired by global style tokens for TTS [79] and intended

to reflect the criteria used by listeners in making their

judgments, and an encoding layer that better aggregates

frame-level scores into utterance-level ones by incorporat-

ing information about their distributions. The combination

of the two proposed improvements was shown to improve

MOS prediction on the in-domain VCC 2018 test set, but

the original MOSNet had the best system-level correlations

when testing on VCC 2016 in a cross-dataset condition,

once again revealing the difficulty of cross-domain MOS

prediction.

3.3.3. Listener modeling in synthetic speech evaluation

A technique that has been gaining attention is listener

modeling. In MOS tests, ratings from multiple listeners are

averaged together to get one value representing the quality

of each utterance. This results in datasets that are a fraction

of the size of the actual number of collected labels. With

the intuition that modeling individual listeners’ ratings

could effectively increase the amount of available training

data and explain variations in the scores, listener-dependent

modeling has emerged as an effective approach to MOS

prediction.

MBNet (Mean-Bias Network) [80] was the first work to

consider the use of per-listener scores for MOS prediction.

They incorporate a mean subnet and a bias subnet that

allows the network to learn the personal preferences of

individual listeners, which can vary widely, in addition to

the averaged scores. The mean subnet predicts the averaged

score similar to previous works, and the bias subnet

predicts the difference between the mean score and an

individual listener’s score, given the listener ID. During

inference, a specific listener ID can be input to predict his

or her rating, or the bias net can be discarded and a

prediction may be generated by the mean net only. Trained

on VCC 2018 and evaluated on both its test set and the

VCC 2016 data, MBNet was shown to improve over the

MOSNet baseline.

LDNet (Listener-Dependent Network) [81] further

proposed several improvements over MBNet. The authors

first hypothesized that the speaker bias can be modeled

using few parameters and made the bias net lightweight.

Instead of discarding the bias net during inference, they

further proposed two inference modes: (1) an ‘‘all

listeners’’ mode, which averages over the predicted

decisions of all of the listeners seen in training, and (2) a

‘‘mean listener’’ mode, where a ‘‘virtual’’ listener is created

during training whose rating is always the mean score of

a given audio sample. LDNet was shown to outperform

MBNet, with the ‘‘mean listener’’ mode giving the best

results.

DeePMOS (Deep Posterior Mean-Opinion-Score) [82]

estimated a posterior Gaussian distribution of MOS ratings.

This was accomplished by extending MBNet to output a

predicted variance in addition to the mean. This approach

improved MSE and system-level correlations over MBNet,

and also provides more interpretable predictions in the

form of distributions as opposed to point estimates.

3.3.4. SSL-based approaches

In parallel to listener modeling, another technique that

has been gaining more attention is the adaptation of SSL-

based speech models. The application of SSL to speech

was first shown to produce excellent results in speech

recognition [83], and has since become the dominant

approach in almost all speech processing tasks [84]. Using

an SSL-based speech model requires two stages: (1) self-

supervised pre-training on large quantities of unlabeled

speech audio for some pretext task, such as contrastive

learning, as in the case of Wav2vec 2.0 [83], or prediction

of masked regions, as in the case of HuBERT (Hidden-Unit
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Bidirectional Encoder Representations from Transformers)

[85], and (2) appending a task-specific prediction head on

the SSL model and fine-tuning with a downstream labeled

dataset. The representations learned in the first stage have

been shown to have excellent capabilities for a large

variety of speech downstream tasks at many levels, from

phoneme recognition and speaker identification to emotion

recognition and intent classification [86].

In 2021, the first effort to use SSL models for the MOS

prediction task was made [87]. They compared the use of

several different pretrained SSL models as encoders,

followed by attention-based pooling of the output frame-

level vectors, to the use of classical features like MFCCs.

The SSL model parameters get updated during training

with MOS-labeled data along with the rest of the model

parameters. They also incorporated listener modeling in a

similar manner to MBNet. As in previous studies, they

trained on VCC2018 and tested on both VCC2018 and

VCC2016, showing improvements in both cases but

especially in the in-domain scenario.

The SSL-MOS model [88] used an even simpler SSL-

based architecture for MOS prediction without any listener

modeling, trained and evaluated on more diverse datasets

including both voice conversion and TTS samples in

several languages. Compared to MOSNet pretrained on

VCC 2018 and finetuned to a mixed dataset of voice

conversion and TTS samples, the SSL-based MOS pre-

dictors showed superior generalization ability to out-of-

domain datasets with unseen systems, even showing

reasonable correlations in the very challenging zero-shot

condition.

A later work [89] considered that prosody and content

are important to consider when evaluating naturalness.

After collecting a large-scale dataset called SOMOS

(Samsung Open MOS) [90] of MOS ratings for samples

from 200 neural synthesizers with an emphasis on

producing prosodic variations, they proposed a content-

aware approach to MOS prediction. They included pro-

sodic features (phoneme-level f0 and duration) and

linguistic features extracted from the known text of the

synthesized utterances (Tacotron [91] encoder outputs,

part-of-speech tags, and BERT [92] embeddings), and

added encoders for these features to several different MOS

predictors trained on SOMOS. Their results demonstrated

that the linguistic features gave improved results for SSL-

MOS, especially at the utterance level, and also that

training converged more quickly when these features were

used.

The authors of a system called RAMP (Retrieval-

Augmented MOS Prediction) [93] considered adding a

non-parametric component to the decoder of an SSL-based

MOS predictor based on k nearest neighbors, consisting

of a datastore of the SSL representations of the training

audio samples and their corresponding MOS scores. A

score can be predicted by retrieving the k nearest neighbors

of an input audio sample and obtaining a distance-weighted

sum of their scores, which can then be fused with the

prediction from the standard decoder. This approach was

shown to improve predictions compared to basic SSL-

MOS, especially for out-of-domain prediction.

The SQuId project [94], while also based on SSL, was

the first massively multilingual research effort towards

MOS prediction for synthesized speech. The basis of their

model is a multi-modal language model pre-trained on a

combination of unlabeled speech, text, and paired text

and speech data. Audio is input as a spectrogram, and the

model is fine-tuned for the MOS prediction task as

regression. They trained it on MOS ratings from over

2000 internal projects for 52 language locales, and the

evaluation data included several ‘‘zero-shot’’ locales that

had been unseen during training. They found some benefits

of transfer learning by including data from many languag-

es, and they also found evidence that these benefits did not

in fact depend on language similarity, indicating that there

are aspects of naturalness that are not language-dependent.

3.3.5. Unsupervised approaches for synthetic speech

quality prediction

The above-mentioned models are trained in a super-

vised manner on datasets with score labels, which can be

difficult to collect. It is therefore of interest to develop

unsupervised approaches that require no MOS-labeled data.

A popular idea is to develop a reference model. This idea

is opposed to the use of a reference sample in double-ended

quality prediction methods, which suffers from two prob-

lems: (1) a reference sample may not always be available,

and (2) the consequence of the ‘‘one-to-many’’ problem is

that perfectly acceptable utterances may be unfairly

penalized if they differ from a reference. In contrast, a

reference model can be viewed as prior knowledge of

natural speech, and it can be trained using a large amount

of natural speech samples. Quality prediction could be

achieved by measuring the distance between the input

speech and natural speech defined by the reference model.

This line of work shares the same concept with unsuper-

vised anomaly detection [95]. Although this approach to

synthesized speech quality prediction has remained largely

under-explored, there have been several studies on this

topic.

In 2008 [56], gender-dependent HMMs were trained on

natural speech and used as reference models. A log-

likelihood measure with respect to these reference models

was then computed from features extracted from synthe-

sized speech. These log-likelihoods were shown to be

useful for predicting several quality dimensions of a P.85-

type listening test, with MOS scores for overall impression,

naturalness, and fluency having the best correlations.
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Correlations on all eight of their rating scales were also

higher with this log-likelihood measure than with P.563

scores. Because this study used ‘‘black box’’ commercial

API-based synthesizers, they did not have access to the

original training data for those systems, so they built their

reference models using speech from different speakers.

A 2013 study [96] built Gaussian mixture models

(GMMs) of the distributions of acoustic feature vectors

extracted from the natural speech of their TTS training

data, vocoded using the same vocoder as their HMM-based

synthesis pipeline, resulting in reference models that are

very well-matched to their target conditions. They mea-

sured the likelihoods of the reference GMMs with respect

to their model’s generated acoustic space and proposed

this as an objective measure of synthesis quality. A later

study [97], inspired by methods in automatic speech

recognition, measured the Kullback-Leibler divergence

between GMMs of natural and synthesized speech from

three different HMM synthesizer variants. They found very

high (over 0.9) correlations with MOS ratings.

Most recently, SpeechLMScore [98] measures the

likelihood of a synthesized audio sample with respect to

a generative speech unit language model which has been

pretrained on natural speech. They evaluated their score’s

correlations with MOS ratings for voice conversion, TTS,

and speech enhancement datasets. In particular, they found

that their approach had better correlations than supervised

systems that were trained on data from mismatched

domains, indicating the superior generalization ability of

this approach.

A paper analyzing the behavior of pretrained SSL

models [99] demonstrated that uncertainty measures de-

rived from these models correlated well with MOS ratings,

without any finetuning for the MOS prediction task. The

authors investigated a variety of different pretrained SSL

models as well as languages of the synthesized speech and

found that in particular, contrastively-pretrained wav2vec

[100] models had the best correlations in all settings. These

experiments demonstrate that even without being exposed

to any synthesized speech data during training, SSL models

still encode some information corresponding to human

judgments of naturalness.

3.3.6. Beyond predicting quality of synthetic speech

Objective scores for synthesized speech may not only

be used for evaluation, but also for other purposes such as

system development. Introducing models of human per-

ception into the development of speech synthesis engines

can serve to produce synthesized speech that better

matches human preferences. There were many such efforts

during the age of concatenative speech synthesis. Concat-

enative text-to-speech synthesizers typically select speech

units from a database of recordings by optimizing for a

weighted combination of target cost, which measures how

well a selected unit matches the desired phonetic sequence

and the target prosodic aspects such as f0 and stress, and

join cost, which penalizes unit concatenation boundaries

that are audibly jarring or discontinuous. The main function

of a concatenative synthesizer is to perform a search over

the available speech units using dynamic programming to

find the best sequence of units that optimizes both of these

costs. One of the primary research tasks during the era of

concatenative synthesis was to find the best features to

express these costs, and to find the best way to weigh them.

Much of this research used human listening test data to find

expressions of these costs, especially the join cost, that

best matched human perception.

Many of these works investigated different distance

measures, such as Euclidean distance, the Kullback-Leibler

measure, and Mahalanobis distance, of a variety of acoustic

features that can be extracted from a speech audio signal,

such as Mel-frequency cepstral coefficients (MFCCs),

power spectra, and line spectrum frequencies [101–103],

measuring correlations of the final costs of synthesized

utterances with their human ratings. Cost weights could be

optimized towards the perceptual results using methods

such as downhill simplex [104], and the best ways to

compute and combine costs from individual units were

also considered, with one study [105] finding that the

average cost of a unit sequence correlated better with

human perception than maximum cost, and that the root

mean squared cost, which combines both the average and

the maximum, having the best correlation of all. Later work

[106] considered how to extract common useful knowledge

from differing listener opinions. Naturalness predictions

were also applied in a dialogue system setting [107], where

predictions of naturalness based on the costs reported by

the synthesizer as well as textual features using knowledge

of how often words appeared in the recording script for

their unit selection database were used to choose the

paraphrasing of the generated dialogue that was most likely

to sound the best when realized by the synthesizer.

More recently [108], a Transformer-based TTS model

[109] was trained using a loss function that included a

predicted MOS term. While they did not observe signifi-

cant improvements in the synthesized speech under normal

training conditions when they included this term, they

found that including it gave improvements under low-

resource data scenarios and when using knowledge

distillation to compress the model. Another recent paper

[110] found that using MOS prediction in a loop of

selecting multi-speaker audio data found online and train-

ing synthesizers on that data could help to quickly evaluate

whether a given speaker’s data can improve the synthesis

model or not.

The works mentioned thus far mostly focused on

speech quality assessment. However, certain dimensions in
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synthetic speech can be important, depending on the target

task. For instance, evaluating speaker similarity is essential

in tasks such as VC, voice cloning, or speaker-adaptive

TTS. While models like MOSNet can be modified to model

speaker similarity, designing models tailored to similarity

prediction is an underexplored field.

SVSNet [111] was based on MOSNet and focused on

speaker similarity evaluation. The authors considered that

symmetry needs to be enforced — speaker similarity

ratings should remain the same regardless of the order in

which the test and reference samples are presented. They

achieved this using a co-attention mechanism which can

also handle content and length mismatches between the

two samples, and they also introduced raw waveform input

using a SincNet [112] learnable filterbank in the encoder.

They experimented with both regression- and classifica-

tion-based learning objectives, finding that regression

produced better results and that their proposed system

overall made better speaker similarity predictions than

MOSNet.

Although machine learning models of human judg-

ments of speaker similarity can be trained from listening

test data, it has instead become common practice to use

cosine similarity between speaker embeddings extracted

from an original audio sample from the target speaker and

a synthesized one [113,114] using speaker recognition

models that have been trained on data from thousands of

speakers. An analysis of the results of VCC 2020 [115]

showed high Pearson correlations above 0.8 between x-

vector cosine similarities and listener ratings for speaker

similarity.

Another task related to MOS prediction for synthesized

speech is the task of spoofing detection. Multi-task learning

was considered for MOS prediction for the first time in

2021 [116], where two auxiliary classification tasks were

added to MOSNet: spoofing detection (a binary decision

about whether the speech is synthesized or real), and

spoofing type classification (a multi-class task that identi-

fies which synthesis system was used). They found that

both auxiliary tasks improved prediction on VCC data,

with their combination producing the best results of

system-level SRCCs of around 0.96. Conversely, MOS

prediction was also shown to aid in the task of fake audio

detection [117].

3.3.7. Predicting rank order and pairwise preferences

Critiques of MOS point out that MOS is not absolute,

but highly affected by biases inherent in the entire context

of the listening test. Therefore, MOS values cannot be

meaningfully compared across different studies, and more

importantly, MOS datasets should not be naively com-

bined. This is a crucial limitation as modern neural

networks require very large quantities of labeled training

data. Some prior work [57] combined MOS datasets by

using score normalization, while a later study [118]

allowed the network to learn how to do the normalization

by incorporating a bias-aware loss function that approx-

imates the specific bias of each dataset with a first-order

polynomial function. In effect, absolute errors caused by

the biases are not penalized, and the model learns the

correct ranking order within each dataset. A later study

[119] introduced a loss function that measures the dif-

ferences between the predicted MOS values between all

pairs of samples in a mini-batch compared to the dif-

ferences in their actual values, effectively measuring the

correctness of the ranking of samples in a mini-batch. This

approach was shown to have benefits over a traditional L1

loss, especially in zero-shot and semi-supervised scenarios.

A system called PrefNet [120] outputs the probability

that one waveform would be preferred over another, given

a pair of audio samples that are expected to contain the

same lexical content but may vary in duration. Similar

to SVSNet, it is important that the results are the same

regardless of the order in which the two samples are input;

this requirement is enforced by the use of anti-symmetric

twin neural networks, and the durational alignment prob-

lem is solved using attention and RNNs. They derived

large-scale pairwise preference data from several

MUSHRA tests by labeling pairs of audio with how often

one sample was rated more highly than the other. They

evaluate their model using percent accuracy rather than

correlations; depending on the testing conditions, accura-

cies ranged from about 50–100%. A later work aiming to

predict pairwise preferences [121] derived a dataset of

preference scores from pairs of MOS ratings from the

same listener, intending to reduce listener bias — they

found that this ‘‘same-listener’’ constraint did in fact result

in predictions with better correlations. Their proposed

model predicts utterance scores for two samples, from

which it can produce a preference score and also system-

level scores aggregated over all utterances from a given

system. Experimental results showed significant improve-

ments over a model that only predicts MOS for one input

audio sample.

3.3.8. Learning from speech quality prediction in other

domains

In parallel with research on opinion predictors for

synthesized speech, researchers in speech quality estima-

tion for telephony and speech enhancement have also been

considering the use of deep neural networks for predicting

MOS ratings [122,123] and relative comparisons [124] of

degraded and processed natural speech. Although the types

of degradations that appear in synthesized speech are

different from degradations to natural speech due to noise

and processing, these tasks are nevertheless very related

and it may be beneficial to consider approaches such as

transfer learning.

E. COOPER et al.: EVALUATION OF SYNTHETIC SPEECH

173



In one such effort [125], the authors use a CNN-LSTM

architecture that they had previously developed and trained

for speech quality estimation of degraded natural speech

[126], and then they continued training the model on MOS

datasets for synthesized speech, including Blizzard and

VCC. They considered that it was important to evaluate on

unseen synthesis systems and so they held out some of the

datasets for this purpose, unlike many past works which

use a randomly selected test set. Despite evaluating on

challenging unseen conditions, they nevertheless had best

correlations upwards of 0.9, although interestingly they

also found that ablating the pretraining by replacing it with

randomly-initialized values only degraded the correlations

by a small amount.

4. THE VOICEMOS CHALLENGE 2022

In 2022, we launched the first VoiceMOS Challenge

[127], a shared task on the topic of MOS prediction for

synthesized speech, with the goals of encouraging research

on this topic and of unifying datasets and evaluation to

make direct comparisons between different approaches.

The challenge attracted 22 participating teams from

academia and industry, accelerated research and generated

discussion on this topic.

4.1. Data and Tracks

There were two tracks in the VoiceMOS Challenge

2022, namely the main track and the out-of-domain track.

Table 1 summarizes the datasets.

In 2021, we collected a large-scale dataset of MOS

ratings for synthesized audio samples as well as reference

natural speech samples. We gathered English-language

synthesized audio samples from several past Blizzard

Challenges from 2008–2016 [65,66,128–131], as well as

from all previous Voice Conversion Challenges [69–71].

We also wanted to include samples from more recent

systems, so we added publicly-shared samples from

ESPnet-TTS [132]. Altogether, we collected samples from

187 different systems (where natural reference speech for

each challenge is considered a ‘‘system’’ as well) and

selected 38 samples per system. We conducted a large-

scale listening test in which we obtained 8 ratings per

sample from 304 unique listeners. This data is described in

detail in our prior work [133] and has been publicly

releasedy as the BVCC dataset. This dataset provided the

material for the main track of the challenge. We created

standard training, development, and testing splits of the

data containing 70%, 15%, and 15% of the data respec-

tively, holding out some unseen speakers, synthesis

systems, and listeners in the development and test sets.

Additionally, we wanted to encourage participants to

investigate semi-supervised and unsupervised approaches

to MOS prediction, so we also ran an out-of-domain

(OOD) track in the challenge. We used listening test data

from the Blizzard Challenge 2019 including the original

MOS ratings from the challenge evaluation, and provided

participants with 10% labeled training data and 40%

unlabeled (audio samples only) training data. The remain-

ing data was divided into a 10% development set and a

40% test set, again including unseen systems and listeners

(but not speakers, as all of the samples were from models

trained on one speaker’s data). Blizzard 2019 focused on

Mandarin-language text-to-speech synthesis, so this track

was challenging both in terms of the smaller amount of

labeled training data as well as the language mismatch with

respect to the main track.

The evaluation metrics used in the challenge were

system-level and utterance-level MSE, LCC, SRCC, and

KTAU, and system-level SRCC was chosen as the primary

metric.

4.2. Baselines

Baseline systems were a simple SSL-based MOS

predictor (SSL-MOS) fine-tuned on the BVCC data [88],

LDNet also trained on BVCC [81], and MOSA-Net [123]

which is also trained on BVCC. All three baselines are

publicly available, where participants were given access to

the pretrained models as well as the recipes for training,

finetuning, and making predictions on the challenge data-

sets. These baselines represent a range of approaches, with

MOSA-Net using features extracted from pretrained SSL

models and other sources, SSL-MOS conducting finetuning

of SSL models, and LDNet conducting listener-dependent

modeling.

4.3. Team Approaches

In the following, we reference and briefly summarize

papers released by participants, which either described

their submitted system or provided an analysis.

. The UTMOS (University of Tokyo MOS) system

(T17) [134] was one of the best-performing systems,

scoring the highest on several metrics. It ensembles

strong and weak learners. The strong learners were

Table 1 Summary of the main track and out-of-domain
(OOD) track datasets in the VoiceMOS Challenge
2022.

Track Lang
# Samples # ratings

Train Dev Test per sample

Main Eng 4,974 1,066 1,066 8

OOD Chi
Label: 136

136 540 10–17
Unlabel: 540 yhttps://doi.org/10.5281/zenodo.6572573
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modified SSL-MOS systems with additional tech-

niques, including contrastive learning, listener-de-

pendent modeling, and phoneme encodings. The weak

learners were regression models including linear

regression, decision tree, and kernel methods. The

inputs to these weak learners were SSL features.

Finally, the team conducted a listening test with the

unlabeled set in the OOD track and added a listening

test ID to combine multiple datasets from different

listening tests. They were in fact one of the few teams

that made use of the unlabeled set.

. The DDOS (Domain adaptive pre-training and Dis-

tribution of Opinion Scores) system (T19) [135]

ranked second in three out of the four system-level

metrics in the main track. In their system, in addition

to regressing to the MOS score, they also modeled the

distribution of the MOS ratings. They also applied

data augmentation by changing the voice pitch. On the

OOD track, they used a domain-adaptive pre-training

technique which reduced MSE. They also provided

zero-shot results on the OOD track.

. The ZevoMOS system (T01) [136] was based on SSL-

MOS, but they used two SSL inputs and an ASR

confidence score. Moreover, the SSL models were

first fine-tuned on the FoR dataset [137] to classify

natural and synthetic speech, then fine-tuned on the

BVCC dataset.

. The system by JAIST (T08) [138] was based on

MOSA-Net with two key concepts: an auditory

filterbank and temporal modulation. A temporal

modulation feature on the gammatone filterbank

(TMGF) was concatenated with the HuBERT fea-

tures. They showed that this method could improve

prediction on utterances with a low MOS.

. The system from NICT (T11) [139] ranked first in

LCC, SRCC, and KTAU in both the main track

system level metrics and the OOD track utterance

level metrics. They proposed a fusion framework

exploiting seven SSL models. For the OOD track,

they applied semi-supervised learning to the unlabeled

set, which was shown to be very effective.

. The system from ByteDance AI-LAB (T20) [140]

ranked 4th in terms of both system- and utterance-

level SRCC. It was based on LDNet, and they

combined the main and OOD track datasets with a

shared encoder and separate decoders. The encoder

was essentially a wav2vec 2.0 model fine-tuned for

phoneme recognition.

. MooseNet [141] was based on SSL-MOS, and their

main idea was to apply PLDA. It transformed frame-

by-frame acoustic features into time-invariant features

by global pooling, an operation similar to that used to

compute speaker vectors for speaker recognition

tasks. Applying PLDA showed improvements com-

pared to the vanilla SSL-MOS.

. A comparison of SSL features and raw acoustic

features like spectrograms was made in [142]. Starting

from LDNet, they showed that combining wav2vec

2.0 and Mel spectrograms or F0 values can improve

the performance, implying that there is complemen-

tary information found in raw acoustic features.

. An analysis focused on various factors when fine-

tuning SSL models [143]. Starting from SSL-MOS

based on wav2vec 2.0, they experimented with not

only synthetic speech but also natural speech in noisy

environments and transmitted over communication

networks, and showed that fine-tuning with mixed-

lingual datasets and larger dataset sizes could improve

generalization performance.

. Another analysis focused on the metadata of the

BVCC dataset [144]. They used the SSL-MOS model

and added metadata information. They showed the

amount of error and correlation that can be explained

by metadata predictors such as system and rater

identifiers. They also showed that since there were

often only very few utterances per system in the

development and test sets, utterance-level metrics

were more informative than the system-level ones.

4.4. Lessons Learned

Overall, we observed that finetuning SSL models for

the MOS prediction task is a powerful approach that can

produce predictions with very high correlations with real

listener ratings. However, we observed that predictions for

unseen systems in the OOD track were substantially more

difficult. This is important because this case corresponds

the most with a real-life use case for MOS predictors —

predicting MOS for a system which has not been evaluated

in a listening test before, and therefore for which no MOS

labels already exist. Furthermore, we asked participating

teams to fill out a survey including questions about what

types of tasks they would like to see in future challenges,

and many responses were about including a larger variety

of audio to evaluate, including synthesis in more different

languages, singing synthesis, and noisy and enhanced

speech.

5. THE VOICEMOS CHALLENGE 2023

The outcomes of the first challenge motivated our

design of the 2023 edition of the challenge [145]. We

focused on real-life MOS prediction in a variety of speech

domains. In the 2023 challenge, we did not provide any

MOS-labeled audio samples in two of the target domains,

and listening tests were ongoing at the same time as the

challenge, meaning that team predictions were made before

the actual ground-truth MOS values were known to
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anyone. In total, 10 teams participated in this year’s

challenge.

5.1. Data and Tracks

There were three tracks in the VoiceMOS Challenge

2023. Table 2 summarizes the datasets for each track.

We collaborated with the organizers of the Blizzard

Challenge 2023 [146] as well as the Singing Voice

Conversion Challenge 2023 (SVCC) [72] to acquire

synthesized samples from their teams for conducting

MOS prediction by our teams, while the Blizzard and

SVCC listening tests were still ongoing.

The Blizzard Challenge 2023 focused on French text-

to-speech synthesis, with a Hub track of their challenge

providing 51 hours of training data from a single speaker,

and a Spoke track providing 2 hours of data from a

different speaker, intended for speaker adaptation. There-

fore, Track 1 of the VoiceMOS Challenge 2023 was

French TTS, and since the Blizzard listening tests were

conducted separately for their Hub and Spoke tasks, we

likewise divided this track into corresponding Tracks 1a

and 1b.

Since spoken voice conversion has reached near-human

levels of naturalness [71], in 2023, the VCC organizers

decided to focus on the task of singing voice conversion —

that is, converting a sung audio sample to a different

speaker identity, using either sung (matched) or spoken

(mismatched) reference audio from the target speaker.

Track 2 of the VoiceMOS Challenge 2023 was therefore

singing voice conversion.

There was substantial interest from the participating

VoiceMOS teams in 2022 to expand to noisy and enhanced

speech, and we also noticed many parallel efforts towards

more automatic evaluation methodologies in the speech

synthesis and speech enhancement communities. Consid-

ering that these are similar tasks and that there could be

benefits from more communication and collaboration

between these communities, Track 3 was noisy and

enhanced speech. Unlike the other two tracks, where no

MOS-labeled training data was provided to participants, we

provided the TMHINT-QI [147] dataset as training data,

with a held-out development set providing evaluation

material for displaying team scores on a leaderboard on

our challenge website during the initial few weeks of the

challenge to encourage early participation and friendly

competition. During the evaluation phase, a separate test

set called the TMHINT-QI2 [148] was curated, with the

same noise generation process, partially different speech

enhancement systems, and completely different raters.

5.2. Baselines

The baseline systems we included were SSL-MOS

[88], which had been the best-performing baseline in the

previous challenge, and UTMOS [134], which was one of

the top team systems from the 2022 challenge that also had

an open-source implementation. We used models that were

pretrained on BVCC as baselines without any additional

development.

5.3. Team Approaches

At the time of writing, only two teams have released

papers describing their systems, so we will briefly

summarize them below.

. The LE-SSL-MOS (Listener-Enhanced Self Super-

vised Learning Mean Opinion Score) system (T06)

[149] showed promising results on all tracks. This was

considered impressive since most teams did well on

one track and performed badly on the other tracks.

There were several key ideas. First, they employed

model ensembling, combining scores for multiple

models. These models include supervised learners,

including a vanilla SSL-MOS model and an SSL-

MOS model enhanced with listener-dependent mod-

eling. They also included unsupervised learners,

where ‘‘unsupervised’’ was defined as not using any

MOS labels during training. These unsupervised

approaches include a fine-tuned SpeechLMScore

[98] model, as well as ASR confidence scores.

. The SQAT-LD system (Speech Quality Assessment

Transformer) (T03) ranked 4th in Track 1a, 2nd in

Track 1b, and 1st in Track 2 [150]. They also

combined SSL-MOS with listener-dependent model-

ing, where their SSL model was SSAST [151]. They

also proposed to combine the weighted scores of each

frame to better predict the overall score. Their model

was trained on the main and OOD datasets from the

VoiceMOS Challenge 2022, and they also included a

bias-aware loss [118] to enable training on multiple

datasets.

5.4. Lessons Learned

From the system descriptions that the teams submitted,

we found that listener-dependent modeling was more

popular this year, and teams that used a mix of different

Table 2 Summary of the test phase data for each track
in the VoiceMOS Challenge 2023.

Track Type Lang Systems
Samples

per system
# ratings

per sample

Track 1a
TTS Fre

Hub: 21 42
15

Track 1b Spoke: 17 34

Track 2
Singing

Eng
In-dom: 25

80 6
VC Cross-dom: 24

Track 3
Noisy &

Chi 97 20 5.3
enhanced

Acoust. Sci. & Tech. 45, 4 (2024)

176



training datasets (BVCC, SOMOS [90], past Blizzard

original data, etc.) also tended to do better. Although we

shared pointers to the training datasets of the Blizzard

Challenge 2023 and Singing Voice Conversion Challenge

2023, as well as other relevant datasets without MOS

labels, no teams made use of those datasets.

We were surprised that many teams had good pre-

diction results for the singing track, especially since none

of the teams reported using any singing data to develop

their systems. We suspect that the domain mismatch

between synthesized singing and speech is not as large as

we had assumed. Furthermore, we also observed that many

teams had large gaps between their results for Tracks 1a

and 1b, although not in any consistent direction across

teams. Upon investigating the training data for the Blizzard

Hub and Spoke tasks, we observed that the Spoke data

contained audible reverberation whereas the Hub data

did not, which may have been one of the reasons for this

result.

For Track 3, we observed generally higher scores,

where some training data was made available, compared

to the other tracks, where there was not. We also observed

that most teams’ scores for the different tracks are very

different, and no team had high scores on all tracks using

the same model trained on the same data, indicating that

general-purpose MOS prediction can still be considered an

open research problem.

6. FUTURE PROSPECTS AND CHALLENGES

Researchers in speech synthesis have long considered

the best ways to compare and evaluate speech synthesis

methods, and reliable objective evaluation metrics have

been a long sought-after goal. Several decades ago,

listeners visited research laboratories in person to listen

to synthesized samples and transcribe them by hand. Now,

crowdsourced MOS tests can be conducted quickly and

conveniently, and powerful self-supervised speech repre-

sentations and large-scale MOS datasets have brought us

closer to the goal of objective metrics. Predicted MOS

values are already being reported in some TTS and voice

conversion papers as an objective evaluation metric along-

side subjective listening test results [72,152] as well as

other now commonly accepted automatic measures such

as ASR word error rate and cosine similarities of speaker

embeddings. MOS predictors are also being used in

research applications such as in loss functions for training

TTS systems [108], data selection for building TTS models

from found data [110], and to aid in fake audio detection

systems [117].

There have been several studies demonstrating that

MOS tests may have become saturated and lost their ability

to meaningfully differentiate between modern-day synthe-

sizers [38,40,43]. Pairwise comparison tests have been

shown to mitigate this. The testing material can also be

chosen to better highlight differences between systems,

thereby making listening tests more efficient [153], a task

that some have suggested can be facilitated by automatic

quality predictors as well [74].

Zero-shot general-purpose quality prediction of synthe-

sized speech still remains an open research problem, with

calibration to different domains and listening test contexts

remaining a challenge. MOS predictors can be used for

applications where the audio data is from a similar domain

to that with which the predictor was trained; however, what

constitutes ‘‘similar enough’’ still remains an open ques-

tion. Care must be taken when reporting and understanding

objective evaluation results given by MOS predictors, and

we still need to accumulate more knowledge on MOS

predictors and their behavior on different out-of-domain

datasets before we can fully accept them as a replacement

for human listening tests.

With the increasing attention being paid to the prob-

lems with MOS tests and ‘‘naturalness’’ as a target, there is

a growing interest in other evaluation methodologies and

their automation. Pairwise preference predictors are one

step in this direction, and, more generally, objective

evaluation methods that can directly output a ranking of

multiple systems as opposed to MOS values would be

interesting future work. There is also substantial evidence

that MOS as a listening test methodology is no longer

sufficient. It is important to consider more comprehensive

listening test methodologies that consider factors such as

context appropriateness and other aspects of listener

opinions, as well as how we can incorporate these factors

into automated evaluations. Data scarcity will always be an

issue in terms of the availability of MOS-labeled data for

every possible domain, context, or question that we ask

listeners, so unsupervised and semi-supervised methods

are an important future research direction. Methods that

enable the combination of smaller or heterogeneous data-

sets, such as models that learn pairwise predictions or

rankings, will be useful for addressing this as well.

Furthermore, interpretable opinion prediction for synthe-

sized speech remains under-explored — there are many

possible reasons why a listener might assign a sample a low

score, and knowing the reason why a sample’s predicted

quality is low would be very useful from a diagnostic point

of view. This line of research would first require a better

understanding of how listeners assign their ratings, and

studies asking listeners for reasons or explanations for

their ratings have been an important step in this direction.

Conversely, if MOS predictors become very accurate and

interpretable, we can consider using them as psycho-

acoustic tools to better understand human perception of

speech. In the long term, we aim to be able to compre-

hensively model human preferences about synthesized
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speech, including arbitrary aspects of human opinions, and

to be able to use those predictions during model develop-

ment to produce the next generation of more realistic,

diverse, and context-adaptable synthesized speech.
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‘‘Matcha-TTS: A fast TTS architecture with conditional flow
matching,’’ Proc. IEEE Int. Conf. Acoust. Speech Signal
Process. (ICASSP) 2024 (2024) (to appear).

[63] W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S.
Narang, J. Raiman and J. Miller, ‘‘Deep Voice 3: Scaling text-
to-speech with convolutional sequence learning,’’ Proc. Int.
Conf. Learning Representations (2018).
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