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This paper investigates the role of communication
in improving coordination within robot swarms,
focusing on a paradigm where learning and
execution occur simultaneously in a decentralized
manner. We highlight the role communication
can play in addressing the credit assignment
problem (individual contribution to the overall
performance), and how it can be influenced by
it. We propose a taxonomy of existing and
future works on communication, focusing on
information selection and physical abstraction as
principal axes for classification: from low-level
lossless compression with raw signal extraction
and processing to high-level lossy compression
with structured communication models. The paper
reviews current research from evolutionary robotics,
multi-agent (deep) reinforcement learning, language
models and biophysics models to outline the
challenges and opportunities of communication in a
collective of robots that continuously learn from one
another through local message exchanges, illustrating
a form of social learning.
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1. Introduction
A general and well-accepted definition of swarm robotics highlights the deployment of a
possibly large collective of robots each with limited computation and communication capabil-
ities working together as a result of multiple local interactions to achieve a common cause
[1–6]. It is important to note that ‘limited’ does not mean ‘simple’: a hypothetical collective of
idealized self-aware language-capable robots could still be considered a swarm if decentralized
coordination is required owing to the inherent delay in communication, even if the environ-
ment is static. The limited capabilities of each robot are to be understood as a relative property
that puts into relation two conceptual levels: (i) at the individual level, the capabilities of one
individual component of the swarm, which encompass both its physical (sensors and actuators)
and algorithmic (memory and computing power) capabilities and (ii) at the global level, the
swarm complexity in terms of its size and spatial configuration, which define the possibilities
of interactions between its components. While the hardware capabilities of the robots limit the
goals that can be achieved, the limitation in software capabilities is the key factor. Whenever
memory or computation is lacking at the individual level, collective action requires decentral-
ized coordination, as each robot can only sense and act in its immediate surroundings. In
addition, it is important to consider the time component of computational complexity, which
depends on either or both a time-constrained task and an inherently dynamic environment.
This implies that the swarm response time should be short enough for its actions to be relevant.

In this paper, we do not impose limitations over the actual capabilities of the robots or on
the swarm structure (e.g. a heterogeneous swarm of unconventional robots is possible) and
allow for different interpretations of what cooperation means (e.g. from just avoiding each other
to displaying complex coordinated strategies). This is covered by the slightly different and
more accurate definition: swarm robotics involves deploying robotic agents that coordinate
in a decentralized manner to achieve a common goal, with each robot limited to sensing
and acting within its immediate environment.1 This definition opens new venues for thinking
about the future of the field, including bridges towards other fields with similar concerns, as we
will see later.

The design of efficient individual policies within a swarm of robots usually relies either
on carefully crafting (possibly bio-inspired) behavioural rules or on using learning and/or
evolutionary optimization algorithms. Robot policies, which are generally similar across a given
swarm, do not change after deployment. While this approach is sufficient in many cases,
it becomes a limitation whenever the target environment is unknown before deployment or
changes over time. This is why an important effort, originally stemming from evolutionary
robotics, has been made since the turn of the twenty-first century to develop decentralized
online evolutionary learning algorithms. This family of algorithms aims at enabling a robot
swarm to adapt continuously while already deployed in the real world, as illustrated in figure
1a, and has been referred to as either embodied evolutionary (EE) robotics [7] or social learning
for swarm robotics [8,9]. These algorithms have achieved remarkable success in terms of the
number of implementations on real robots when compared with other fields working with
learning multi-robot systems (see [10] for a review).

In this paper, we posit that the class of problems addressed when using such social
learning or EE algorithms is covered by the umbrella term of decentralized learning and
execution (DLE), which designates a paradigm that will be more familiar to the wider
reinforcement learning community [11,12]. This contrasts with the widely used ‘design then
deploy’ paradigm, which includes (i) prior hand design, (ii) offline evolutionary robotics,
and (iii) multi-agent reinforcement learning under the centralized training and decentralized
execution paradigm.

1We consider swarms of self-interested robotic agents as off-topic from the present study.
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We focus here on how communication within a swarm of robots can be used to improve
coordination under the DLE paradigm. Communication can obviously be used by each robot
in the swarm to enable information sharing and/or synchronized behavioural response [3,4].
However, communication can also play a role in the very nature of the learning process as all
computation regarding learning under the DLE paradigm is performed in the field, without any
human or central computer involved. A straight-forward form of communication in this context
is exemplified by the crude control parameter sharing used in EE algorithms [7,9,13,14], where
(either all or a sub-part of) the neural weights of artificial neural networks are sent from one
robot to its neighbours, possibly attached with a self-assessment of its performance from local
observations (details in [10]).

In §2, we start by exploring how working in the DLE paradigm raises unique challenges,
whether communication among robots is enabled or not. We expose how using DLE can lead
to counter-intuitive consequences owing to learning in a decentralized fashion, in particular
regarding unwanted and counter-productive competition among robots. In §3, we propose a
taxonomy to characterize existing and future works on communication. In §4 we offer a review
of existing works that draw from several very different domains such as biophysics, evolu-
tionary robotics, language evolution, multi-agent deep reinforcement learning and language
models—to provide an overview of current and future directions. We propose a classification of
communication means along the axes of information selection and physical abstraction, ranging

Figure 1. (A) A swarm of robots is deployed in an unknown environment. Robots must learn together to solve a task. Robots
interact locally with nearby robots and physical elements. (B) The decision-making process of a focal robot is based on cues
from the physical world and signals from the social world. (C) Diagram of the communication and control policies for a
robot, distinguishing between signals for local interactions and cues from the broader environment. The pink box denotes the
policy of the robot which gets information from observations (i.e. cues and signals) and produces actions (i.e. effectors and
communication channels). There are two sub-policies for each process, though in practice a single general policy may be used
(e.g. a single artificial neural network), or multiple policies, either ad hoc or subject to learning.
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from raw information directly available in the environment in §4a (e.g. transfer of heat or
matter, either as raw information or as mathematical abstractions) up to high-level language-
based communication in §4b (e.g. emergent or human-like syntax and grammar). Finally, in §5,
we summarize important ideas explored earlier and provide comments and considerations for
the future.

2. Dynamics of decentralized learning and execution
As stated in §1, natural evolution and social learning are good examples of processes working
under the DLE paradigm. Individuals compete with one another to gain a selective advantage.
Combined with random variations and inheritable traits, the traits of successful individuals
will become more frequent over time. Of course, there is a stark contrast between natural
systems and swarm robotics systems: we engineer the robot swarm to address a particular
problem defined before deployment which may require coordination to be addressed (foraging,
exploration, patrolling, transporting, construction or monitoring to give a few examples [15]).
While the desired outcome may be relatively easy to define, the challenge is to endow each
robot with the capability to assess how much it contributes to solving the task, i.e. self-assessing
the robot’s contribution to the global welfare of the collective, which is itself determined by how
efficiently the task is solved.

In a collective, devising the contribution of each individual is referred to as the credit
assignment problem, which is well known in the multi-agent and cooperative game theory
communities [16,17]. If a complete alignment of the individual’s interest with the global welfare
of the collective is possible, the best actions from the viewpoint of the robot will also be the
best for the collective. In a set-up where individual policies are learned, this corresponds to
converging towards a Nash equilibrium that is also a social optimum, meaning none of the
robots has the incentive to deviate from its current behavioural strategy as it is already the best
the robot can do reward-wise (see [18–20] for theoretical considerations in distributed robotic
systems, and [21] for a practical example with evolutionary learning in a swarm of robots where
there is a mismatch between evolutionary stable strategies and social optimal strategies).

A direct way to make individual interests coincide with that of the team would be to provide
each individual with a measure of their contribution to the global performance. However,
estimating the marginal contribution of each robot to the performance of the collective is
intractable in the general case. Even in an idealistic setting, when a scenario can be replayed
an indefinite number of times and robots can be removed or added at will, computation time
for estimating the marginal contributions for each individual grows exponentially with the
population size as all subsets of individuals must be considered [22–24]. It is also interesting
to note that the more classic reinforcement learning methods using centralized learning do not
yield optimal results, as the marginal contributions of the robots are often partially or badly
estimated even by the centralized critic used in multi-agent (deep) reinforcement learning [12].
One efficient simplifying hypothesis used in the field of evolutionary collective robotics is to
consider a swarm of clones [25,26], turning what originally looks like a collective decision-mak-
ing problem into an optimization problem as a single control parameter set is used for the entire
swarm and optimized in a centralized fashion. This method is, however, not applicable under
the DLE paradigm as it requires a centralized coordinator for learning.

Approximation methods to estimate on-the-fly the marginal contribution of robots in a
collective exist, of course, and trade tractability against a lack of optimality or assume simplify-
ing hypotheses on the class of problems to be addressed (see in particular [27–29]). A straight-
forward method is for the human supervisor to define a priori an explicit evaluation function
embedded in each robot whose goal is to evaluate locally the performance of said robot. This
is the case with most works in EE and social learning in swarm robotics, where each robot
computes an estimate of its performance based solely on directly available information and
self-assessment [10]. This is also the case in cooperative multi-agent learning whenever each
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agent is an independent learner, i.e. considering others as part of a non-stationary environment
[30]. In both cases, the global performance will depend on the ability of the human engineer to
design a function that provides a reliable estimate of the performance of a robot, aligning local
motivation with the desired global outcome. Obviously, this can quickly become challenging as
the task and/or the environment grow in complexity—e.g. foraging in a field without obstacles
can be very different from foraging in a complex environment where the division of labour
offers a significant advantage.

Unfortunately, the slightest misalignment between the individual’s interests and that of
the collective can lead to a suboptimal group-wise performance. In this case, the whole swarm
will eventually converge towards a Nash equilibrium that does not guarantee social optimality.
This is explained by the nature of the evolutionary dynamics at work behind social learning in
a swarm: elements that play a part in the behavioural strategies of the robots are competing
among themselves to invade the population of robots. If the metric used to compare those
elements is aligned (respectively, not aligned) with the global task, then competition will end
with individual strategies that are optimal (respectively, sub-optimal) with respect to the task.
This can be explained by using the famous ‘selfish gene’ metaphor popularized by Richard
Dawkins [31]: robots are merely vehicles for competing units (e.g. genes or group of genes,
neural network parameters, symbols from an emerging language, elements of an artificial
culture, etc.) facing selective pressure.

Such evolutionary dynamics can then have a direct effect on the long-term behavioural
strategies of neighbouring robots, with sometimes surprising outcomes such as mutualistic
cooperation (i.e. cooperation that benefits each involved party) and altruistic behaviour (i.e.
cooperation that involves a net loss at the individual level, but which indirectly benefits the
survival of related individuals) [32]. In particular, each individual’s strategy is shaped by
its inclusive fitness that captures both its ability to survive and its ability to help related
individuals (a relation that is generally, but not always, defined at the genotypic level) [33].
Kin selection, the process by which an individual favours their relatives, is also relevant for the
development of cultural adaptation [34] and language [35]. This has been shown previously to
also be the case with social learning algorithms for swarm robotics [36]: robots can lose part of
their survival chances to help robots with whom they share information.

Figure 2 combines the two concepts just discussed: (i) the stronger the alignment between
the individual’s interest and the group’s welfare, the better the performance with respect to the
user-defined objective (x-axis) and (ii) inclusive fitness, which shows the degree to which an
individual’s interest is aligned with that of its relatives (y-axis). In this figure, we show two
opposed extreme configurations, one in which individuals in the swarm are in confrontation
with conflicting interests, and another one in which individuals’ interests are aligned and
individuals cooperate to maximizing the social welfare, whether this incurs an individual cost
or not. Obviously, the level of cooperation for solving the user-defined task will be maximal
if alignment is complete, and may decrease otherwise depending on the task at hand. Much
less obvious is the influence of inclusive fitness, where an individual cost may be paid for the
benefit of the whole. Insight can be achieved by looking at the example of eusocial colonies
(e.g. ants and termites) where the fitness of one individual is vastly defined by that of its
superorganism. In this case, individual actions that benefit the group will be performed, even
if they are detrimental to the individual (see [37] for a study of the effect of inclusive fitness in
evolutionary collective robotics). To some extent, a high level of inclusive fitness can compen-
sate for a misalignment between the individual’s interest and that of its conspecifics. In the
figure, we formulate this relation as the degree to which the Nash equilibrium of the evolving
population will converge to the socially optimal outcome with respect to the user-defined task.

We now turn our attention back to communication in a swarm of robots and the implication
of previous considerations on it. Communication can be used to endow each robot with the
ability to locally estimate its contribution in an online fashion, as shown by recent works in
the field of cooperative multi-agent reinforcement learning that proposed using communication
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between robots to locally aggregate the data available on the performance of the swarm as a
whole [38,39]. In this way, communication can be used to gather data on a macroscopic scale so
that more information is available to each individual regarding the performance of the whole,
and possibly to provide an individual’s ability to measure its contribution. Although this does
not solve the credit assignment problem, communication can help to perform counterfactual
reasoning to simulate hypothetical scenarios in the absence of the focal robot [40].

Unfortunately, communication also suffers from a possible misalignment between the Nash
equilibrium and socially optimal strategies, especially if it evolves (e.g. emergent signalling
or language). In case of misalignment, environmental contingencies and competitive pressure
among individuals can lead to sub-optimal communication strategies, as evolving communica-
tion undergoes the same pressures as learning the action policy, resulting in robots developing
sub-optimal communication efficiency to gain a competitive advantage against competitors [41].
In turn, evolving communication may benefit from robots with a higher degree of inclusive
fitness and/or a shared interest between individuals [42].

Figure 2. Alignment of Nash equilibrium with social welfare with respect to the degree of inclusive fitness and the degree
of shared interest among robots. The x-axis shows how aligned the individual’s interest (e.g. its local fitness function) is with
that of the group, which is uniquely defined by its ability to optimally solve the task. The y-axis shows the level of inclusive
fitness experienced by each individual in the population (e.g. owing to kin recognition, environmental viscosity, etc.). The
four text boxes on the graph provide examples using the well-known theoretical games of Prisoner’s Dilemma (a competitive
game where players should defect) and Stag Hunt (a coordination game where players should cooperate) and two extremes
regarding how inclusive is an individual’s fitness in a population (unrelated individuals working for their own sake versus a
population of clones working for the collective).
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3. A taxonomy of signalling methods in swarm robotics
First, let us start by narrowing the scope regarding the nature of communication we are
interested in by distinguishing cues from signals. Cues provide information to the focal
individual, extracted from the environment through direct observations (e.g. the relative
alignment of nearby conspecifics [43,44]) or identification of body markers (e.g. a conspecific’s
phenotypic trait). They do not require an identified interlocutor and, if another individual
is involved, they are not produced intentionally. Signals involve an emitter and at least one
receiver. They are produced intentionally by the emitter through one or several available
modalities (auditory, visual, olfactory, etc.), and can vary greatly in complexity, from the
production of a chemical compound to human language. The interested reader can refer to
[45] for a comprehensive introduction to cues and signalling in nature.

Figure 1b,c provides an illustration from a robot swarm perspective. Each robot may
experience both cues, observed in the physical world, and signals, originating from other
robots and received through dedicated channels such as short-range proximity communication
devices (e.g. infrared, visible light, radio, etc.). We explicitly limit our scope to the moment
when information from the signal is readily available to the robot, leaving any pre-processing
transparent (signals can be initially extracted from another modality such as speech and sign
language, as is the case in robot–human communication [46]).

Communication strategies in swarm robotics cover both stigmergic communication and
direct communication. Stigmergic communication works by leaving a trace in the environment
[47,48], such as a virtual pheromone trail for other robots to consider [49,50]). Direct communi-
cation involves explicit exchanges of information among robots, either through pre-defined
or emergent signalling strategies. In particular, emergent communication strategies evolve
naturally from the interactions and the optimization processes at work within the swarm,
enabling robots to converge towards efficient adaptive behaviours without centralized control.

In addition to whether signalling strategies are learned or pre-defined, the nature of
the signals can vary greatly taking, for instance, discrete and continuous forms. Low-level
communication methods often mimic natural processes such as diffusion, reaction and
advection, enabling robots to share information about their local environment. High-level
methods involve more abstract forms of communication, such as emergent or structured
language models, allowing for sophisticated interactions and decision-making.

Signalling also necessarily incurs some form of restriction over the nature and the amount
of information that will be shared, driven by the necessity to transfer relevant information only.
This process may be lossless (e.g. suppressing redundant information, compressing information
without loss or changing the way information is represented) or lossy (e.g. ignoring irrele-
vant information, compression with loss). In practice, as the complexity of the environment
increases, so does the need for sharing only that which is relevant for the task at hand (e.g.
selection attention in humans [51], or methods used to avoid the curse of dimensionality in
machine learning [52]).

We propose two axes for classification using the degree of information selection and
the degree of physical abstraction. On one hand, information selection aims at reducing
the quantity of information shared by losing information not deemed relevant. On the other
hand, physical abstraction aims at changing the way information is represented without loss of
information to reveal what is already present. This is illustrated in figure 3. The left-hand part
of the figure provides an analogy with algebra to provide an intuition using a mathematical
metaphor. The right-hand part maps well-known approaches used in swarm and collective
robotics, which will be explored further in the later sections.

In the region considering a low degree of both information selection and physical abstrac-
tion, communication processes are closely tied to raw physical phenomena, such as reaction,
diffusion and advection. These methods mimic natural processes to transfer information,
focusing on detailed, low-level interactions. Increasing the level of physical abstraction (x-axis)
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enables the extraction of hidden but highly relevant information from raw information such
as using spectrum analysis or Fourier transforms, e.g. to capture geometric information of
collective spatial configurations [53]. Similarly, a second axis (y-axis) explores how increasing
the degree of information selection can extract relevant information in different forms. For
example, sharing parameters of an artificial neural network controller that maps sensory inputs
to motor outputs, as is common in adaptive swarm robotics [10], can be seen as a highly
compressed (and biased) instance of a reaction-diffusion process. Finally, the extremes of both
axes point towards signalling strategies with high degrees of information selection and physical
abstraction, where we can find, e.g. the use of a communication apparatus that is based on a
large language model (LLM), enabling human-level structured perception and signalling.

4. Current trends in signalling for swarm robotics
In this section, we provide a review of relevant methods from swarm robotics as well as
other domains, to reveal what the future states of signalling could be, considering both ad hoc
and emerging signalling methods. The section follows the structure provided earlier: we first
describe signalling methods with a low degree of information selection in §4a, then move up
to those with a high degree of information selection in §4b. In each sub-section, strategies with
different degrees of physical abstraction are described, also drawing from domains beyond
that of swarm robotics. We make significant room for signalling methods used in multi-agent
reinforcement learning as well as in the currently popular domain of LLMs. As mentioned in
§1, we stress that while existing swarm robotics hardware is still technically limited, this state
of affairs may change in the near future. As a consequence, we expect that collective systems
that can be identified under the umbrella of robot swarms will feature embedded computation
capabilities powerful enough to run, and possibly train in real-time, LLMs (e.g. LLMs can
already run on limited hardware [54]).

Figure 3. Signalling methods can be projected in a two-dimensional plane using information selection and physical
abstraction as main components. (A) An algebraic analogy for information selection and physical abstraction in
communication processes. Changing the degree of information selection can be done through operations like restriction to
a subspace (projection with or without loss). Changing the level of physical abstraction can be done via a change of basis,
such as transforming a complex matrix into a simpler diagonal form, illustrating how information can be simplified and
structured. (B) ifferent approaches to communication in robotics, mapped by information selection and physical abstraction.
Low-level methods include biophysics-inspired processes, while high-level methods involve language models and emergent
languages.

8

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 383: 20240148

Downloaded from http://royalsocietypublishing.org/rsta/article-pdf/doi/10.1098/rsta.2024.0148/1330114/rsta.2024.0148.pdf
by guest
on 20 December 2025



(a) Low degree of information selection
Summary: In this section, we investigate communication in multi-agent systems as informa-
tion exchanges with minimal simplification of the baseline observable data from local agents.
This involves two types of signalling schemes. Scheme (1) involves signals that reflect local
observations directly. Biological examples include social insect communication and autoinducer
exchanges in bacteria. In swarm robotics, these principles are applied through algorithms
mimicking biological behaviours through local interaction and communication rules. Scheme
(2) includes signals with a high level of physical abstraction and structure, such as the use of
Fourier transforms and wavelets to analyse and share periodic patterns and multi-scale features
in data. In swarm robotics, agents might share with immediate neighbours their computed
gradients or neural network weights, or perform Fourier transforms or eigenspectrum analysis
to understand and communicate the underlying structure of complex data.

Multi-agent communication with low information selection (lower part of figure 3) involves
the direct and explicit exchange of observable information from local agents [55]. The signals
are transmitted in a form that retains most of the original observations, without any extensive
selection mechanism removing parts of the baseline observation data. In figure 1c, communica-
tion with low information selection involves minimal loss of information between the cues
from the environment and their packaging into signals sent to other agents. This approach is
relevant either (i) in cases where the observations already have low dimensionality, (ii) in cases
where most of the observations contribute to the collective dynamics of the group or (iii) in
cases where knowing in advance which parts of the observations are useful to communicate is
difficult to achieve.

(1) Low physical abstraction: In the case with both low information selection and low
physical abstraction (lower left-hand quadrant in figure 3), signals represent direct and tangible
information about the environment, with minimal transformations from the observations
of local agents. This type of signalling is exemplified by the following biological systems:
autoinducers exchanges among bacteria [56], auditory and tactile signals in Drosophila [57],
chemical alarms released from certain fish species to alert conspecifics of the presence of a
predator [58], the bioluminescence mechanisms of fireflies for mate attraction [59], electric
signals in certain fish [60] or birds songs to attract mates [61] or to signal aggressive intent [62].

Swarm robotics algorithms deployed on small robots or with self-organization capabilities
also fit in this quadrant, because they rely on simple ad hoc signalling rules based directly
on local states and observations, without significant loss of information or transformations.
For instance, in [42] a signalling behaviour is optimized so that robots emit specific signals
when they are close to an object or zone of interest. In [63], robots share all their local sensory
information with their neighbours during a predator–prey task. The relative position of each
robot or site of interest is locally broadcasted in [64,65]. In [66], robots can probabilistically
broadcast information from one to another to assess the dynamics of information propagation.

Multi-agent systems inspired by physical dynamics can also be classified in this category:
e.g. reaction-diffusion [67], chemical oscillations [68] and morphogenesis [69] can be seen as
multi-agent systems where agents are spatial discretization points and global dynamics emerge
from local interactions (communication without information loss). Diffusion is a fundamental
physical process where particles spread from areas of higher density to areas of lower den-
sity. In multi-agent systems, diffusion can serve as a means of communication. For example,
chemical signalling in cells relies on molecular diffusion to guide movement, growth and
specialization. Reaction-diffusion systems involve the creation, transformation or destruction of
diffusive elements through local interactions to create complex patterns. In multi-agent systems,
reaction-diffusion can explain how agents interact with their environment and each other via
chemical signals [70].

Moreover, making robots out of molecules allows the creation of massive swarms of millions
of robots. In the last decades, researchers have used artificial DNA as computing and building
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blocks to develop molecular robotics [71]. Such robots can take the form of DNA origami that
self-assemble into complex three-dimensional nanostructures, able to connect to each other or
change configuration depending on biochemical cues [72–79]. Simpler structures can also be
programmed to move on tracks [80] and sort cargoes at the nanoscale [81]. Coating beads
with DNA allows to create micro-robots with higher computing capabilities, with reaction-dif-
fusion serving to form both controllers and signals [82–84]. Another emerging field is con-
trollable active matter, where self-propelled agents process chemical signals locally, leading
to self-organization [85–91]. A final example is the Turing model of morphogenesis, which
explains how patterns like animal stripes and spots emerge from the interaction of diffusing
chemicals, inspiring a swarm robotics implementation where local communication mimics a
reaction-diffusion system to achieve shape formation [92].

(2) High physical abstraction: The lower right-hand quadrant of figure 3 represents
communication methods involving abstract and structured information, often detached from
direct physical processes, with minimal information loss from observations.

This includes methods such as broadcasting gradients where agents locally exchange
mathematical abstractions rather than direct physical signals. Gradients represent the internal
state of each agent’s model, rather than a direct physical quantity. For instance, gradient
propagation can compute a geodesic distance to a source robot by incrementally communi-
cating values through neighbouring agents [93]. Gradient broadcasting can occur through
microscopic rules derived from local observations [93–95], or via multi-agent reinforcement
learning where the gradients of the loss function are broadcasted from agents to agents [96].
Having differentiation capabilities, i.e. access to the gradient of local states and/or messages,
allows the training process to directly use this information (e.g. via gradient descent algo-
rithms), accelerating convergence.

Eigenspectrum analysis [97] also fits this quadrant, examining eigenvalues and eigenvectors
to reveal the underlying structure of data. Eigenspectrum analysis is widely used in a variety of
fields, ranging from signal processing and machine learning to network analysis. This process
can involve similar dynamics as those obtained in the lower left-hand quadrant—however, it
will also use mathematical tools to change the representation of information without loss of
information. For instance, in [53] a swarm of Kilobot robots estimates, in a decentralized way,
the eigenspectrum of the communication graph between robots. Such properties are then used
to reach a global consensus on the shape of the swarm, achieving arena shape recognition.
This process is achieved by relying on a physics-inspired communication scheme based on
the diffusion of heat across the swarm and mathematical tools to locally extract the second
eigenvalue λ2 of the graph Laplacian, a direct fingerprint of the arena shape containing the
swarm.

Fourier transforms [98] and wavelets are other examples of abstract tools. Fourier transforms
convert signals between the time and frequency domains, enabling agents to analyse and share
information about periodic patterns. Wavelets decompose data into different scales, allowing
agents to communicate detailed features of a signal, from broad trends to fine details. While
Fourier transforms and wavelets are not yet used to process signals in swarm robotics settings,
their capabilities to work with more abstract representations may allow a new class of commu-
nication schemes—e.g. to perform distributed spectral analysis as a result of communication, as
in [53].

(b) High degree of information selection
Summary: In this section, we explore decentralized communication as viewed from the prisms
of the information bottleneck, language evolution and multi-agent reinforcement learning in
situated environments. Reinforcement learning approaches to emergent communication are
examined, highlighting both benefits and challenges. We emphasize the opportunities provided
by LLMs for advancing communication in swarm robotics, noting their strengths in generating
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human-like language and reasoning, and challenges such as biases, hallucinations, embodiment
and efficient deployment on robots. Overall, we present a range of approaches, with different
degrees of physical abstraction, that enable decentralized agents to learn communication.

In realistic decentralized environments, all observed information is not relevant to transmit
to partners. Thus, a higher degree of information selection (upper part of figure 3) is required to
allow efficient transmission of the relevant information. This task can be decomposed into two
complementary sub-tasks: (i) selecting relevant information and (ii) transmitting this informa-
tion. The selection task involves extracting parts of the observed information that are relevant to
other agents. The transmission task requires coding this information so other agents understand
it while ensuring that bandwidth constraints are respected. Both tasks are highly interconnec-
ted. The selected information requires adequate means of coding to be transmitted without (or
with minimal) loss. The transmission means, in turn, influence the information selection by
dictating what information can be transmitted efficiently [99]. This is a form of information
bottleneck, where agents need to generate a compressed mapping of their observations, that
contains as much information as possible related to the task at hand [100]. As communication
comes necessarily at a cost, languages operate a trade-off between meaning and compression
[101,102], maximizing expressiveness while minimizing communication costs.

Studying language games shows how languages emerge from this information bottleneck, and
from various ecological constraints. In his seminal work, Luc Steels [103] demonstrated that
having a dynamic population of embodied agents, whose reasoning is unknown to one another,
motivates the emergence of a shared compositional language. In the iterated learning frame-
work [104,105], the emphasis is put on a transmission bottleneck that occurs when language is
transmitted between successive generations of agents, driving languages to adopt simple and
compositional structures. Later works have shown that emergent languages are also shaped by
environmental [106,107] and physiological [108] constraints. These experiments highlight the
different requirements for languages to originate in populations of independent agents, and
demonstrate the emergence of efficient naming and grammatical conventions [102,109–111].

However, these language games still heavily simplify the context of communication
interactions, by making the agents, their observations, and their actions, solely defined by
the communication game. Previous works have classified this kind of setting as non-situated
[112], as opposed to situated agents that have a localized existence and can physically interact
with their surroundings. In situated environments, communication is one of many interfacing
processes. It can be used for communicating not only about observations, but also about intents,
or even about task-agnostic and abstract concepts. It may involve non-cooperative agents. It
might not even be required at all times. In such realistic settings, choosing which information
is relevant to communicate is a much more complex task that involves reasoning about the
current state of the environment, the agent’s objective and the current knowledge and reasoning
of other agents. In that sense, learning to communicate is inherently a multi-agent problem of
learning how to behave in a dynamic, partially observable environment.

Recently, research in multi-agent reinforcement learning has tackled such situated envi-
ronments, where performance depends on a combination of physical and communication
behaviour [113]. In this context, multi-agent systems learn, often with centralized training and
decentralized execution, to generate messages that participate in maximizing future returns.
Here, messages are continuous vectors generated by neural networks inside the agents’ system.
This makes communication a differentiable sub-step of the action selection process, which can be
learned fully end-to-end as a tool for maximizing returns [114–117]. Because the message
generation is differentiable, gradients can flow between agents. Thus, messages are explicitly
trained to help other agents maximize their rewards. This approach has been extended in
various ways for more targeted information sharing [118–120] or to limit bandwidth usage
[121–124]. Similar approaches have been developed using discrete symbols for communication
[125–129]. In those, agents have to reach a consensus on the meaning of each symbol through
trial and error. The compression constraint depends both on the size of the vocabulary and the
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size of the sequences. Previous works have shown that imposing constraints on both of these
attributes induces emergent languages to develop common characteristics of natural languages
such as compositionality [130,131] and abbreviation of frequent words [132].

However, learning emergent communication through this task-oriented reinforcement
learning process has many important limitations. As already mentioned, it often requires a
centralized learning algorithm to allow reinforcement learning tools to reliably converge to
adequate solutions. As with all gradient-based learning methods, it acts as a black box that
lacks practical ways of interpreting and measuring its efficiency [133,134]. More importantly,
differentiable emergent communication gives no guarantee of learning to communicate about
concepts from the environment. Rather, guided by return maximization, agents converge to
a consensus that may seem random to the human eye [135]. This lacks ways of anchoring
its concepts in environmental, task-agnostic modalities. This is akin to the problem of symbol
grounding [136]. Having emergent communication grounded in meanings from the environment
would allow decentralized agents to learn to communicate about concepts that are shared with
other agents, making learning easier and communication more efficient [103,106,137].

Following this idea, grounding approaches have been explored in multi-agent reinforcement
learning. By linking communication with visual data [138,139], natural language [140–143] or
both [144,145], agents learn to generate messages using task-agnostic concepts. In other words,
they learn to use concepts dictated by external modalities to transmit information efficiently,
instead of searching for a consensus on their own, starting from scratch and guided only by
rewards. Agents may acquire ‘grounded’ knowledge through a variety of techniques: pre-train-
ing on a supervised task [140,144–146], alternating between supervision and self-play [146,147],
optimizing the supervised learning and reinforcement learning objective at the same time
[139,142,143,145,148], or constructing additional rewards based on supervised models [144].
The nature of the subsidiary tasks depends on the desired type of grounding. An autoencod-
ing task can be added to ensure agents communicate about their observations [139,148]. To
ground communication in natural language, agents can be shown examples of human-gener-
ated sentences [138,140,142,143] or learn to generate similar outputs as pre-trained language
models [141,145]. A challenge when learning to use natural language is to avoid language drift
[145], requiring constant supervision to prevent agents from forgetting the intended use of
the given language [144–146]. Natural language offers an efficient solution to the information
bottleneck problem while allowing effortless interpretation and teaming with unknown agents
(human or artificial).

When using natural language, an obvious solution is to turn to LLMs. In addition to being
extremely good for generating human-like sentences, they can also be grounded in visual and
behavioural modalities [149]. Their context window can be exploited in various ways to insert
factual information or state objectives to achieve and particular behaviours to adopt [150]. This
is thanks to two important aspects of training the LLMs. First, the language-modelling pre-
training phase shows the model of how humans formulate their reasoning in natural language.
Second, the explicit instruction-following task optimized with reinforcement learning from
human feedback [151] trains the LLM to pay close attention to what has been requested and
how it should be answered. Consequently, LLMs can be used as a basis for modelling interact-
ing agents [149,150,152]. Such agent-based LLMs are given information about the environment,
the task, their identity and their role in the environment, all inside an initial prompt. Following
this initialization, they observe and act in the environment through visual, textual and physical
inputs and outputs [150,152]. Thanks to their reasoning and conversing skills, LLM agents can
discuss their knowledge and intents with partners before selecting an action [153]. This can be
pushed even further with personas assigned to each LLM agent, allowing a large diversity of
different behaviours and offering the advantages of collective reasoning [154–158].

LLMs offer a nice playground for multi-agent interactions. They efficiently emulate human
reasoning and communication. Their built-in interactivity provides a great tool for interpreta-
tion [159] and human–agent interactions [153,160,161]. However, several issues with LLMs
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remain and need addressing. First, embodying LLMs is a challenge requiring links to be
made between language and environmental modalities (visual and behavioural). The current
development of multi-modal LLMs is a step towards solving this challenge [149]. But, these
approaches often require a costly fine-tuning phase to adapt the model to its new modalities.
A subsequent problem is the deployment of LLM-based agents on small robotic platforms,
which requires engineering work to adapt to the constraints of such platforms. This is especially
true for decentralized robots that must be self-sufficient and are often limited in memory and
computing power. Furthermore, we need ways of countering the intrinsic biases present in
human-generated data that LLMs inevitably reproduce [162]. Last, the problem of hallucina-
tions remains an important obstacle. LLMs are known for inventing information and being
reluctant to admit when they are wrong [163]. This can lead to issues ranging from deception
to breaking the simulation, which requires more work on methods for detecting, measuring
and avoiding these hallucinations. While these issues can, and will certainly be addressed, this
reminds us that other solutions using smaller models also work and might be preferable in
many situations.

To conclude, we see that many approaches exist for teaching decentralized agents to
communicate about high-dimensional environmental features. They rely on languages that
select information to communicate more efficiently. These languages abstract physical elements
of the world by grounding symbols in environmental features, allowing the establishment of
conventions on how information should be transmitted. Different degrees of physical abstrac-
tion may serve different purposes. A group of agents specialized in a single task may be
content with low physically abstracted differentiable emergent communication learned from
task reward. On the other hand, established concepts and grammatical rules provide the tools
to generalize acquired knowledge, compose new ideas from fundamental language blocks
and communicate with unknown partners. Thus, higher physical abstraction, found in natural
languages, is better suited to handle more general settings.

5. Conclusion
We have explored how communication through signalling can be crucial in enhancing
coordination within robot swarms operating under the DLE paradigm. We have proposed a
structured framework to classify existing and future signalling methods, covering a wide range
of information selection levels and physical abstractions. Throughout the paper, we advocate
that swarm robotics with distributed online learning capabilities offer unique challenges, for
which communication can play a positive role, but to which communication is also subject. The
key messages of our paper are summarized hereafter.

(a) A path towards complex communication strategies
Earlier works in swarm robotics were closely inspired by social insects. The current state-of-
the-art in swarm robotics now shows a great variety of applications and robotics set-ups,
including dense to sparse swarms with homogeneous or heterogeneous robots. To account for
the fast-paced advances in hardware and software, it is important to keep in mind that swarm
robotics is about the relation between microscopic interactions and macroscopic organization,
which remains valid even if powerful computation and signalling capabilities are available. A
practical consequence we envision is the advent of robots using LLMs, composing a society
of embodied agents with human-like signalling capabilities that are still bound by environmen-
tal contingencies (e.g. local communication only, complex physical interactions). Beyond the
anticipated gains in performance, incorporating human language-like capabilities can offer
valuable benefits with respect to explainability and human–robot interaction through the use of
a shared language.
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(b) Decentralized learning and adaptive dynamics in swarm robotics present a unique
challenge

Addressing the problem of distributed credit assignment is a well-known challenge in multi-
agent systems. However, conducting learning in a decentralized and online fashion adds
another layer of complexity, especially when policy parameters hop from one robot to the
next. A consequence is that nearby robots can share similar parameters, which can indirectly
cause either altruistic or competitive behaviours depending on the degree of relation between
individuals (see §2). Differing from natural systems where the population may grow, the fixed
size of a robot swarm affects where competition occurs: robots are mere resources for which
policy parameters are competing, rather than the opposite. Exploring the long-term adaptive
dynamics of behavioural strategies (in which signalling is included) in dynamic and unpre-
dictable environments will be critical for developing adaptive and resilient swarm systems.
This opens up an exciting avenue, requiring an interdisciplinary research effort, integrating
expertise from fields such as evolutionary game theory [164], collective decision-making [16],
evolutionary dynamics [165], sociophysics [166,167], physics of active matter [168], evolutionary
computation [169] and machine learning [170].

We conclude with a list of take-home messages, targeting the three communities we believe
will be at the centre of this coming revolution:

— Researchers in swarm robotics: simple robots are not inherently ‘simple’. What matters is
the emergence of complex behaviours from microscopic interactions. Whether you work
with large or small robots, dense or sparse populations, or few or many robots, all are
welcome under the broad aim of continual learning in swarm systems.

— Researchers in machine learning: this is all about embodiment. Swarm robotics
introduces a unique category of machine learning problems with elements of ‘social’
learning across physically embodied agents. Anchoring language models in physical
systems brings new challenges and capabilities in distributed, online learning.

— Researchers in complex systems: swarm robotics provides a controllable model for
exploring active matter, sociophysics models, reaction-diffusion and diffusion biophysics
processes. Swarm robotics offers an experimental platform for addressing fundamental
questions about adaptive collective systems.

We believe that DLE will inevitably become more prominent in swarm robotics, with signal-
ling playing a fundamental role. We intend for this paper to serve as a milestone in shaping
the future of this field by providing a framework to understand the complexities and poten-
tials of swarm robotics, where local interactions drive continuously learning embodied agents
equipped with complex signalling mechanisms.
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