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Abstract

Autism diagnosis remains a critical healthcare challenge, with current assessments con-
tributing to average diagnostic ages of 5 and extending to 8 in underserved populations.
With the FDA approval of CanvasDx in 2021, the paradigm of human-in-the-loop AI di-
agnostics entered the pediatric market as the first medical device for clinically precise
autism diagnosis at scale, while fully automated deep learning approaches have remained
underdeveloped. However, the importance of early autism detection, ideally before 3 years
of age, underscores the value of developing even more automated AI approaches, due to
their potentials for scale, reach, and privacy. We present the first systematic evaluation
of multimodal LLMs as direct replacements for human annotation in AI-based autism
detection. Evaluating seven Gemini model variants (1.5–2.5 series) on 50 YouTube videos
shows clear generational progression: version 1.5 models achieve 72–80% accuracy, version
2.0 models reach 80%, and version 2.5 models attain 85–90%, with the best model (2.5 Pro)
achieving 89.6% classification accuracy using validated autism detection AI models (LR5)—
comparable to the 88% clinical baseline and approaching crowdworker performance of
92–98%. The 24% improvement across two generations suggests the gap is closing. LLMs
demonstrate high within-model consistency versus moderate human agreement, with dis-
tinct assessment strategies: LLMs focus on language/behavioral markers, crowdworkers
prioritize social-emotional engagement, clinicians balance both. While LLMs have yet to
match the highest-performing subset of human annotators in their ability to extract behav-
ioral features that are useful for human-in-the-loop AI diagnosis, their rapid improvement
and advantages in consistency, scalability, cost, and privacy position them as potentially
viable alternatives for aiding diagnostic processes in the future.

Keywords: multimodal large language models; autism spectrum disorder; video-based
screening; machine learning; artificial intelligence; human-in-the-loop AI
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1. Introduction
The diagnosis of autism represents one of the most pressing bottlenecks in pedi-

atric healthcare. Current clinical assessments rely on extensive behavioral evaluations
through standardized instruments such as the Autism Diagnostic Observation Schedule
(ADOS) [1,2] and the Autism Diagnostic Interview-Revised (ADI-R) [3], which assess
between approximately 20 and 100 behaviors and require several hours of specialized
clinical expertise. This resource-intensive process has created an untenable situation: while
autism prevalence has risen to affect 1 in 31 children in the United States [4], the average
age of diagnosis remains around 5 years [5], extending to 8 years or later in underserved
populations [6,7]. These diagnostic delays deny children access to early interventions
during the narrow developmental window when behavioral therapies yield the maximum
benefit [8,9].

Recent advances in machine learning have demonstrated that behavioral features
extracted from brief home videos by humans can lead to diagnostic accuracies exceeding
90% when processed through optimized classifiers [10]. Building on foundational work
that focused on clinically accurate but sparse models of 5–10 predictive features [11–14],
researchers have successfully validated video-based screening approaches that could the-
oretically democratize access to diagnostic services and eliminate the need for lengthy
evaluations using the current resource-intensive in-clinic approaches [15,16]. These ad-
vances led to Washington et al.’s finding that a subset of high-performing non-expert
crowdworkers, identified through a stringent crowd filtration process, could reliably ex-
tract clinically relevant features from naturalistic videos, achieving 92–98% accuracy when
their annotations were fed through validated classifiers [17].

However, the promise of crowdsourced behavioral assessment has been constrained
due to operational realities. Washington et al.’s methodology, while a punctuated leap
forward for child healthcare, still suffers from scalability issues: from an initial pool
of 1107 potential workers on Amazon Mechanical Turk who were evaluated, only 102
(9.2%) passed the rigorous quality control measures necessary to become reliable video
annotators [17,18]. This extensive filtering process, requiring multiple training rounds and
continuous quality monitoring, presents barriers to large-scale deployment. Moreover,
privacy concerns may necessitate video modifications such as face obfuscation and audio
pitch shifting for some families who may be hesitant to share raw videos, which can
decrease accuracy to as low as 78% [17]. These limitations have the potential to be addressed
through fully automated digital diagnostics, which have remained a challenge for the field
for many years [19,20].

To address these limitations, there have been several recent efforts to create automated
computer vision classifiers for autism [21–33]. While various deep learning approaches
have attempted fully automated classification [24–26,31], they consistently achieve lower
accuracy (76–85%) than human-in-the-loop methods and additionally, they cannot explain
their predictions at the feature level. This interpretability gap makes them unsuitable
for clinical deployment, for which understanding the basis of diagnostic decisions is
paramount. We seek to understand whether the emergence of multimodal large language
models (LLMs) can support automated classification that reaches the performance level of
human-in-the-loop approaches. Unlike human-in-the-loop approaches that require exten-
sive human labor by definition, modern multimodal LLMs can directly process and analyze
complex behavioral information from video content without human intermediaries [34,35].
These models have the potential to leverage their broad pre-training on diverse visual and
linguistic data to understand nuanced social behaviors, eliminating both the bottleneck of
human recruitment and the privacy concerns inherent to the human viewing of patient
health information (PHI).
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The application of LLMs to behavioral assessment represents part of a broader
paradigm shift in psychological and mental health diagnostics, with recent work demon-
strating that these models can move beyond traditional rating scales to leverage natural
language as a richer assessment modality [36]. Studies evaluating LLMs on mental health
diagnostic tasks have shown promising results across depression, anxiety, and other condi-
tions, suggesting feasibility for structured diagnostic evaluation in neurodevelopmental
disorders [37]. While proposals for responsible development emphasize the need for the
careful validation and consideration of potential biases before clinical deployment [38], the
emerging capabilities of LLMs to understand complex behavioral patterns from multimodal
data offer exciting opportunities for scalable diagnostic tools.

Recent applications of LLMs to autism-related tasks have shown promise, with models
demonstrating the ability to match clinical expertise in diagnostic reasoning [39,40], identi-
fying autism-relevant language patterns [41], and leveraging audio-visual information for
behavior recognition [27].

In this work, we present the first systematic evaluation of multimodal LLMs as po-
tential replacements for human crowdworkers in autism detection and monitoring. We
evaluate seven LLM variants from Google’s Gemini model family—spanning three gener-
ations from Gemini 1.5 to 2.5 series—on their ability to extract behavioral features from
the same 50 YouTube videos previously annotated by crowdworkers and clinical experts.
Each model is asked to respond to a set of behavioral feature questions used by vali-
dated machine learning classifiers [10], which have demonstrated high accuracy in prior
studies [10,17]. This direct comparison on identical tasks enables us to assess whether
general-purpose LLMs can match or exceed the performance of carefully selected and
trained human annotators.

Our investigation addresses questions about the viability and mechanisms of LLM-
based behavioral assessment. First, we examine whether multimodal LLMs can achieve
diagnostic accuracy comparable to human experts, tracking performance evolution across
model generations to understand the trajectory of improvement. Second, we investigate
how LLMs differ from humans in their assessment strategies—analyzing inter-rater relia-
bility patterns, feature prioritization, and the behavioral cues to which they attend. Third,
we identify the factors that determine when LLMs succeed or fail, examining how video
characteristics, particularly the presence of autism diagnosis, influence model–human
agreement. Finally, through systematic ablation studies, we dissect the contribution of dif-
ferent model components—including structured reasoning, multimodal processing, prompt
engineering, and contextual information—to understand the technical requirements for
reliable behavioral assessment.

2. Related Work
2.1. Feature Reduction in Autism Machine Learning Models

The foundation for video-based autism screening emerged from efforts to reduce the
complexity of traditional diagnostic instruments to arrive at a quantitative, objective, and
scalable diagnostic approach. Wall et al. [11,12] demonstrated through ML analysis of
records from use of ADOS and ADI-R that models using 7–8 behavioral features could
achieve high accuracy in independent validation datasets, opening up promise for more
streamlined approaches. Subsequent refinements produced the LR5 and LR10 classifiers,
which use 5 and 10 features to predict autism [13,14]. Such minimally viable feature sets
have shown predictive accuracy including with complex cases [42].
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2.2. Crowdsourced Behavioral Annotation

Building on these reduced feature sets, researchers validated that non-expert crowd-
workers could reliably extract diagnostic signals from naturalistic videos. Tariq et al. [10]
achieved 88.9% accuracy using approximately 2 min home videos rated by humans in time-
frames roughly equivalent to the video lengths, with independent validation maintaining
80% accuracy—demonstrating that brief observations on easy-to-access video data in natu-
ral environments could capture clinically meaningful behaviors. Abbas et al. [15] extended
this approach by combining video with parent inputs, showing superior performance
to traditional screening tools like M-CHAT. Myers et al. [43] provided further validation
by demonstrating strong agreement between crowdsourced and expert assessments on
toddler videos. Parallel work explored multimodal approaches, with Zhu et al. [32] show-
ing that response-to-name paradigms could effectively identify autism markers in early
screening contexts.

However, operational realities limit the scalability of crowdsourced screening. For
example, Washington et al.’s comprehensive studies [17–19] identified a bottleneck: only
9.2% of potential workers (102 of 1107) passed the rigorous quality control measures
necessary for reliable annotation. Even after extensive training, maintaining annotation
quality required continuous monitoring and calibration. Privacy concerns compounded
these challenges. For example, face obfuscation and audio pitch shifting, while necessary
for protecting participant identity, degraded accuracy from 92% to 78% with combined
protections [17]. Researchers explored alternatives like feature replacement methods [44]
and structured observation tools [45] to mitigate these limitations, but the tension between
scalability, privacy, and accuracy persists. The per-video annotation costs and infrastructure
requirements could represent barriers for human-in-the-loop AI approaches to achieve
population-scale deployment despite their technical success [20,46]. Now with the advent
of LLMs, we have the opportunity to explore ways to balance scaling limits of human-in-
the-loop AI approaches with AI solutions.

2.3. Evolution of Large Language Models for Behavioral Assessment

The emergence of multimodal foundation models represents a paradigm shift in auto-
mated behavioral analysis. Early vision-language models like CLIP [47] and Flamingo [34]
demonstrated capabilities in understanding visual content through natural language,
though they lacked the specialized reasoning required for clinical assessment. The in-
troduction of models like GPT-4 [48] and particularly the Gemini family [35] marked a
breakthrough, combining video understanding with reasoning capabilities that poten-
tially enable better clinical understanding. The Gemini 2.5 series’ incorporation of explicit
“thinking” modes [49] enables structured reasoning about complex behavioral patterns—a
capability especially relevant for nuanced diagnostic tasks. Recent evidence confirms these
capabilities, with Nelson et al. [50] demonstrating that GPT-4o and Gemini 2.0 achieved
near-human performance in facial emotion recognition without task-specific training.

Recent applications to autism-specific tasks have also begun to yield solid results. Stan-
ley et al. [39] demonstrated that LLMs can deconstruct the clinical intuition behind autism
diagnosis, matching expert reasoning patterns. Jiang et al. [40] showed LLMs functioning
as diagnostic copilots in real clinical scenarios, while language-focused approaches success-
fully identified autism-associated communication patterns [41,51]. Multimodal systems
have pushed boundaries further, with audio-visual behavior recognition systems [27] and
social reciprocity assessment frameworks [26,52] demonstrating that LLMs can integrate
complex behavioral cues across modalities. The broader success of LLMs in healthcare,
e.g., from surpassing human experts in predicting neuroscience results [53] to matching
physician performance in clinical tasks [54–56], suggests their potential for transform-
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ing diagnostic workflows. Medical-specific adaptations like Med-Gemini [57–59] further
demonstrate the feasibility of specialized clinical applications.

While numerous fully automated approaches have been developed for autism de-
tection from remote video and audio data, including multimodal fusion methods [60],
audio-based classification, and feature-specific prediction models [21,61,62], these remote
assessment methods consistently underperform in comparison to human-in-the-loop ap-
proaches when analyzing home videos. Specifically focusing on audiovisual classification
from naturalistic home settings, Serna-Aguilera et al. [24] achieved 82% accuracy, Kojovic
et al. [25] reported 80.9%, and Liu et al. [26] demonstrated 76% accuracy—all below the
92–98% accuracy achieved by crowdworker approaches on similar home video data [17].
Additionally, these deep learning methods function as black-box classifiers that cannot
provide feature-level interpretability or explain which specific behaviors drive their pre-
dictions. This limitation prevents meaningful comparison with human annotators at the
behavioral feature level, which is essential for understanding diagnostic reasoning and
ensuring clinical validity. Our work, therefore, focuses on comparing multimodal LLMs
with human-in-the-loop approaches, as both can provide interpretable, feature-level as-
sessments that enable direct analysis of how different evaluators prioritize and interpret
behavioral markers.

2.4. Addressing a Key Gap: Direct Comparison of LLMs and Human Annotators

To our knowledge, no study has directly compared multimodal LLMs against human
crowdworkers on identical behavioral annotation tasks. Existing deep learning approaches
for autism detection [24,32,63,64] relied on specialized architectures trained specifically for
autism classification, requiring a lot of labeled data and offering limited interpretability.
These black-box models could not explain their reasoning or identify which behavioral fea-
tures drove their predictions. In contrast, general-purpose LLMs offer the potential to per-
form behavioral assessment using their broad pre-training, without task-specific fine-tuning,
while providing interpretable feature-level outputs comparable to human annotations.

This comparison is important for determining whether LLMs can address the lim-
itations that have prevented video-based screening from reaching clinical practice. If
general-purpose LLMs can match the 92–98% accuracy achieved by carefully selected
crowdworkers [17] while eliminating recruitment bottlenecks, training requirements, pri-
vacy concerns, and per-video costs, they have the potential to help enable population-scale
autism diagnosis. Our work directly addresses this gap by evaluating seven Gemini model
variants against both crowdworkers and clinical experts on identical videos, using the same
validated classifiers, and analyzing not just accuracy but also agreement patterns, feature
prioritization, and the mechanisms underlying their assessments. This comprehensive
comparison reveals both the promise and limitations of LLM-based behavioral assessment,
informing the path toward scalable diagnostic tools.

3. Materials and Methods
Figure 1 illustrates the complete experimental pipeline for evaluating multimodal

LLMs against human raters in autism detection, encompassing data collection, feature
extraction, machine learning classification, and diagnostic prediction stages.
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Figure 1. Overview of the experimental pipeline for LLM-based autism detection. The workflow
consists of four stages: (1) data collection from home videos with structured prompts, (2) feature
extraction through crowdworkers, clinicians, and LLMs to generate behavioral ratings, (3) ML
classification using validated LR5/LR10 classifiers, and (4) diagnosis generation through both ML-
assisted and direct approaches. The pipeline demonstrates the comparative evaluation framework
for assessing LLM performance against human baselines.

Figure 2 presents a detailed flowchart of the experimental methodology, illustrating
our approach for evaluating multimodal LLMs against human baselines in autism diagnos-
tic assessment. The process begins with data collection from 50 YouTube videos (25 autism,
25 neurotypical), followed by behavioral feature extraction using multiple choice questions
on a 0–3 ordinal scale. Three parallel annotation paths are then executed: (1) 7 LLM variants
from Gemini 1.5–2.5 series, (2) 102 qualified crowdworkers, and (3) 11 licensed clinicians.
The extracted features feed into two assessment approaches: direct diagnosis, for which
models provide autism assessments without intermediate classifiers, or machine learning
classification using the validated LR5 and LR10 classifiers. Our performance evaluation
encompasses multiple metrics (accuracy, sensitivity, specificity, precision, ROC-AUC, PR-
AUC), followed by three parallel analysis streams: inter-rater reliability analysis using
weighted kappa coefficients, feature importance analysis using permutation importance
and random forest methods, and ablation studies examining audio input, thinking mode,
prompt format, and behavioral context. Our methodology concludes with a comparative
analysis between LLM and human performance, including error analysis and video-level
agreement patterns.
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50 YouTube Videos
(25 ASD, 25 NT)
Age: 1–7 years

Behavioral Feature Extraction
0–3 ordinal scale

7 LLM Variants
(Gemini 1.5–2.5)

Crowdworkers
(n=102 qualified)

Clinicians
(n=11 licensed)

Direct
Diagnosis?

Machine Learning Classification
LR5 (5 features + age)
LR10 (9 features + age)

Performance Metrics
Accuracy, Sensitivity, Specificity, Precision

ROC-AUC, PR-AUC

Ablation Studies
Audio, Thinking Mode

Prompt Format, Context

Agreement Analysis
Weighted Kappa (κw)

Feature Importance
Permutation Importance

Random Forest

Comparative Analysis
LLM vs Human Performance

Error Analysis

No

Yes

Figure 2. Detailed flowchart of the experimental methodology. The workflow begins with 50 YouTube
videos, proceeds through behavioral feature extraction using multiple choice questions, evaluates
three groups of raters (LLMs, crowdworkers, and clinicians), and then branches based on direct
diagnosis assessment. If direct diagnosis is performed (yes), the workflow bypasses ML classification
and proceeds directly to performance evaluation. If not (no), features are processed through machine
learning classifiers (LR5/LR10) before performance evaluation. The methodology culminates in a
comprehensive analysis including agreement analysis, feature importance analysis, and ablation
studies. Purple boxes indicate data/results, green boxes represent processing steps, and the yellow
diamond shows the decision point for direct diagnosis assessment.

3.1. Dataset

We utilized the same 50 YouTube videos analyzed by Washington et al. [17], comprising
25 children with parent-reported autism diagnoses and 25 neurotypical controls, balanced
by gender (52% male, 48% female). Children ranged from 1 to 7 years (mean: 3.5 years, SD:
1.7 years), representing the typical age range for autism screening. Videos were recorded in
naturalistic home settings, averaging 171.3 ± 105.0 s in duration, and captured unstructured
play and social interaction scenarios. All videos met three inclusion criteria essential for
behavioral assessment: (1) the child’s face and hands were clearly visible, (2) opportunities
for social engagement with caregivers or siblings were present, and (3) the child interacted
with toys or objects enabling the assessment of play behaviors. This dataset has been
extensively validated in prior crowdsourcing studies, with parent-reported diagnoses
confirmed through clinical severity ratings [17].

We acknowledge that this curated dataset of YouTube videos may not fully capture the
complexities of real-world clinical deployment. The videos were selected for clear visibility
of the child’s face and hands, good lighting conditions, and minimal occlusions—conditions
that may not always be present in routine clinical or home settings. Real-world applications
would need to handle varying video quality, multiple camera angles, partial occlusions,
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background noise, and cultural differences in behavioral expression and social interaction
patterns. However, using this standardized dataset was essential for direct comparison
with the established human-in-the-loop baselines from Washington et al. [17], allowing
us to isolate the performance differences between LLMs and human annotators under
controlled conditions.

3.2. Behavioral Feature Extraction

Following Washington et al.’s protocol [17], each video was evaluated using the set of
ordinal responses to multiple-choice questions utilized by LR5 and LR10 classifiers. The
questions used by each classifier assess three core domains: Language and Communication,
Reciprocal Social Interaction, and Stereotyped Behaviors and Restricted Interests. Each
question employed a 0–3 ordinal scale, where 0 indicates typical behavior, 1 represents
mild differences, 2 signifies moderate differences, and 3 denotes significant differences
from typical development. Some behavioral features include numerical suffixes (−1, −2)
that distinguish assessments adapted for different developmental levels: −1 for children
with emerging language skills and −2 for verbally fluent children. The LLMs received
a standardized prompt identifying them as behavioral analysts tasked with scoring ob-
servable behaviors in the video (see Appendix A for the complete prompt). Of note, we
instructed the models to provide their best assessment even when specific behaviors were
not clearly exhibited.

The feature extraction stage transforms raw video observations into quantifiable be-
havioral markers that serve as inputs to downstream classifiers. The selection of these
specific features is grounded in prior work on clinical validation, with each feature cap-
turing distinct aspects of the autism phenotype. Language and Communication features
(e.g., echolalia, expressive language, speech patterns) leverage the models’ strong linguistic
capabilities from pre-training. Reciprocal Social Interaction features (e.g., eye contact,
emotion expression, social overtures) require a nuanced interpretation of non-verbal cues
and contextual understanding. Stereotyped Behaviors and Restricted Interests present
unique challenges, as they often manifest as subtle repetitive patterns that may be diffi-
cult to detect in brief video segments. The structured prompt design ensures consistent
interpretation across models, while the ordinal scoring system (0–3) provides a granu-
lar assessment beyond binary classification. This multi-dimensional feature extraction
approach enables the capture of heterogeneous autism presentations while maintaining
clinical interpretability—a key advantage over end-to-end deep learning approaches that
operate as black boxes.

3.3. Machine Learning Classifiers and Direct Diagnosis

We evaluated model responses using the same two logistic regression classifiers
validated in Washington et al. [17]. The LR5 classifier utilizes 5 behavioral features and
was trained on ouctomes from administration of ADOS Module 2 (for children with phrase
speech) from 1319 children with autism and 70 controls without autism. The LR10 classifier
employs 9 features plus age and was trained on outcomes from administration of ADOS
Module 3 (for verbally fluent children) from 2870 children with autism and 273 controls
without autism. These classifiers represent optimally sparse models that maintain >90%
accuracy while using minimal feature sets [13,14]. The specific features for LR5 include: age,
stereotyped speech, reciprocal social communication, facial expressions, speech patterns,
and eye contact. LR10 extends this set with additional social and communication features,
including stereotyped interests, social initiations/overtures, aggression, communicative
engagement, and quality of social response.
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Beyond classifier-mediated assessment, we evaluated a “direct diagnosis” approach
through which models were explicitly asked to determine whether the child in the video
showed signs consistent with autism. We tested two prompt formats for this diagnostic
question: a binary format (autism/neurotypical) and a three-choice format that included
an intermediate “some evidence of autism” option (see Appendix A for exact wording).
For the three-choice format, both “some evidence” and “strong evidence” responses were
coded as positive for autism diagnosis to maintain binary classification compatibility.

This direct approach was tested in two configurations: (1) with context, where the
diagnostic question was presented alongside all the behavioral questions, allowing the
model to integrate its behavioral assessments into the diagnostic decision, and (2) without
context, where only the diagnostic question was presented in isolation. This design enabled
us to assess whether LLMs could leverage behavioral feature patterns for diagnostic
reasoning versus making assessments based solely on gestalt impressions.

3.4. Model Configurations

We evaluated seven variants from Google’s Gemini model family spanning three
generations: Gemini 1.5 (Pro and Flash), Gemini 2.0 (Flash and Flash Lite), and Gemini 2.5
(Pro, Flash, and Flash Lite Preview). All models were accessed through Google Cloud’s
Vertex AI API. For efficiency, we implemented a batch-processing approach where all the
behavioral questions were sent to each model in a single API call per video, minimizing
latency and API costs.

For the 2.5 series models featuring “thinking” mode capabilities [49], we enabled this
feature using dynamic budget configuration (thinking_budget = −1), allowing models
to allocate computational resources adaptively based on question complexity. The think-
ing configuration included thought summaries (include_thoughts = True) to capture the
model’s reasoning process.

Each model configuration was run five times independently to assess response stability.
Maximum output tokens were set to 64,000 to accommodate both the thinking process
and final responses. All models received identical multimodal inputs (video with audio).
Videos were processed sequentially with exponential backoff for rate limiting (2n s for
attempt n).

3.5. Performance Assessment and Human Baselines

Model performance was benchmarked against two human baselines. The first con-
sisted of crowdworkers from the work of Washington et al. [17] who achieved 92–98%
accuracy, depending on aggregation method (mean, median, or mode across multiple
raters). The second baseline was established through recruited clinical evaluators. We
recruited 11 licensed clinicians with expertise in developmental pediatrics or autism assess-
ment to evaluate the same 50 videos. The clinician cohort provided 82 total assessments:
one clinician assessed all 50 videos, and the remaining 10 clinicians assessed between 1
and 4 videos each (mean: 7.5 videos per clinician). This resulted in 42 videos having single
clinician assessments and 8 videos receiving multiple assessments (3–7 clinicians), with an
average of 1.6 clinicians per video. To ensure fair comparison with crowdworker baselines
and maintain consistency with the methodology in Washington et al. [17], for videos with
multiple clinician assessments, we randomly selected three clinicians and computed mean
aggregation to derive consensus scores.

Primary performance metrics included classification accuracy, sensitivity (recall),
specificity, precision, ROC-AUC, and PR-AUC. For inter-rater reliability analysis, we
employed weighted Cohen’s kappa (κw), which accounts for the degree of disagreement in
ordinal ratings—which is particularly important given the 0–3 scale of behavioral features.
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Weighted kappa values were computed both within models (across 5 runs) to assess
consistency, and between models to evaluate agreement across different architectures.

3.6. Statistical Analysis

All metrics are reported as mean ± 95% confidence intervals. For AI models, confi-
dence intervals were computed using t-distribution across five independent runs to assess
response stability. For human evaluators, confidence intervals were computed using boot-
strap resampling with 10,000 iterations across videos to account for the variable number
of raters and heterogeneous sampling structure. For feature importance analysis, we
employed both permutation importance (model-agnostic) and random forest feature impor-
tance (capturing non-linear interactions), ranking features by their impact on classification
accuracy. Video-level agreement was analyzed using Pearson correlation to identify factors
influencing model-human consensus.

Performance trajectories across model generations were analyzed using least squares
regression to project improvement trends. For ablation studies, we evaluated the contribu-
tion of individual components by comparing model performance with and without each
feature. Effects are reported as percentage-point differences in accuracy between configura-
tions. Specifically, we examined the following: (1) thinking mode (enabled vs. disabled for
2.5 series models), (2) multimodal input (video + audio vs. video-only), (3) context inclusion
(behavioral questions provided with vs. without diagnostic query), and (4) prompt format
(binary vs. three-choice response options). These comparisons enabled us to quantify the
relative importance of each technical component for reliable behavioral assessment.

During the preparation of this manuscript, the authors used Claude Opus 4.1 for
the purposes of drafting and editing text, refining paper structure, formatting results
presentations, and improving manuscript clarity and coherence. Additionally, the authors
used Gemini 2.5 Flash Image (Nano Banana) to generate some of the icons used in Figure 1.
The authors have reviewed and edited the output and take full responsibility for the content
of this publication.

4. Results
4.1. Overall Performance Benchmarking

We evaluated seven Gemini model variants across three generations on autism be-
havioral assessment tasks. Table 1 presents performance metrics across all models and
human evaluators, while Figure 3 illustrates the temporal evolution of model capabilities.
For human benchmarks, we collected clinician evaluations from 11 licensed professionals.
Crowdworker performance benchmarks were established from the work of Washington
et al. [17], where the reported range (92–98%) reflects different aggregation methods (mean,
median, and mode) across multiple raters per video.

Our results demonstrate performance gains across model generations, with accuracy
improving from 72.0% (±1.8) in Gemini 1.5 Flash to 89.6% (±2.1) in Gemini 2.5 Pro using
the LR5 classifier—representing a 24.4% relative improvement over 15 months of model
development. The progression follows a consistent upward trajectory: the 1.5 series
achieved 72–80% accuracy, the 2.0 series reached 80%, and the 2.5 series attained 85–90%
accuracy. This advancement, visualized by the trend line in Figure 3 (excluding the 2.5 Flash
Lite Preview outlier, explained later in this section), shows a least squares regression with a
slope of 0.0402 accuracy percentage points per day (R2 = 0.409, p = 0.172). However, this
linear projection should be interpreted with caution. The observed trajectory may represent
the early phase of a logistic growth curve that will eventually plateau as models approach
theoretical performance limits. The temporal progression could follow a logarithmic,
rather than linear, scale—a possibility we cannot definitively assess with seven data points
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spanning 15 months. Therefore, the fitted trend line should be interpreted as characterizing
recent historical progress, rather than as a predictive model, acknowledging that the true
functional form of advancement may differ from the linear approximation shown.

Table 1. Baseline model performance: comprehensive performance metrics across 7 Gemini models
and human evaluators. * indicates best-performing models.

Model Classifier Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) ROC-AUC (%) PR-AUC (%)

2.5 Pro *
LR5 89.6 ± 2.1 89.0 ± 2.1 90.4 ± 2.7 88.8 ± 2.2 95.6 ± 0.6 96.0 ± 0.7

LR10 87.2 ± 1.4 88.5 ± 2.0 85.6 ± 2.7 88.8 ± 2.2 91.6 ± 2.5 93.6 ± 1.9
Direct 90.0 ± 2.5 89.7 ± 2.6 90.4 ± 2.7 89.6 ± 2.7 90.0 ± 2.5 86.2 ± 3.2

2.5 Flash *
LR5 85.6 ± 1.1 80.0 ± 1.4 96.0 ± 0.0 76.0 ± 2.2 92.6 ± 0.4 93.5 ± 0.3

LR10 79.6 ± 1.1 76.7 ± 1.5 84.0 ± 0.0 75.2 ± 2.2 88.2 ± 0.5 88.9 ± 0.4
Direct 85.6 ± 1.1 86.2 ± 1.9 84.0 ± 0.0 87.2 ± 2.2 86.0 ± 1.1 80.4 ± 1.6

2.5 Flash Lite Preview
LR5 63.6 ± 1.1 60.5 ± 1.0 80.0 ± 0.0 47.2 ± 2.2 66.0 ± 1.6 62.2 ± 1.3

LR10 53.2 ± 2.2 52.2 ± 1.6 75.2 ± 2.2 30.4 ± 4.2 57.7 ± 1.1 53.5 ± 0.4
Direct 53.6 ± 1.1 54.8 ± 1.5 39.2 ± 2.2 68.0 ± 0.0 54.0 ± 1.1 52.2 ± 0.6

2.0 Flash *
LR5 80.0 ± 0.0 75.9 ± 0.0 88.0 ± 0.0 72.0 ± 0.0 88.1 ± 1.1 89.7 ± 1.1

LR10 72.0 ± 0.0 66.7 ± 0.0 88.0 ± 0.0 56.0 ± 0.0 84.6 ± 0.7 85.2 ± 0.6
Direct 78.0 ± 0.0 73.3 ± 0.0 88.0 ± 0.0 68.0 ± 0.0 78.0 ± 0.0 70.5 ± 0.0

2.0 Flash Lite
LR5 69.5 ± 2.5 64.6 ± 1.9 89.2 ± 2.7 49.7 ± 2.2 83.0 ± 1.9 75.8 ± 1.6

LR10 65.5 ± 1.8 59.6 ± 1.6 95.6 ± 0.0 34.7 ± 3.2 85.2 ± 0.7 80.5 ± 1.6
Direct 82.7 ± 3.3 80.8 ± 4.8 86.4 ± 2.7 79.1 ± 6.3 82.7 ± 3.3 76.3 ± 4.2

1.5 Pro
LR5 80.0 ± 0.0 94.1 ± 0.0 64.0 ± 0.0 96.0 ± 0.0 91.8 ± 0.3 89.0 ± 1.1

LR10 76.0 ± 2.5 93.3 ± 0.6 56.8 ± 5.0 96.0 ± 0.0 87.6 ± 0.5 85.4 ± 1.0
Direct 72.4 ± 2.1 92.5 ± 0.6 48.8 ± 4.2 96.0 ± 0.0 72.4 ± 2.1 70.6 ± 2.1

1.5 Flash
LR5 72.0 ± 1.8 85.4 ± 5.7 52.8 ± 2.2 91.2 ± 4.2 81.3 ± 0.9 82.6 ± 1.0

LR10 78.8 ± 2.2 78.1 ± 2.3 80.8 ± 3.5 76.8 ± 2.7 83.6 ± 1.2 63.6 ± 1.6
Direct 82.4 ± 1.1 76.3 ± 1.4 94.4 ± 2.7 70.4 ± 2.7 82.4 ± 1.1 75.0 ± 1.2

Clinicians LR5 88.0 ± 9.0 100.0 ± 0.0 76.0 ± 16.9 100.0 ± 0.0 98.1 ± 2.9 98.4 ± 2.6
LR10 98.0 ± 3.0 100.0 ± 0.0 96.0 ± 6.8 100.0 ± 0.0 99.0 ± 1.8 99.2 ± 1.6

Crowdworkers [17] LR5 92.0–98.0 ± 3.0–7.0 92.0–100.0 ± 0.0–10.4 88.0–96.0 ± 6.8–13.0 92.0–100.0 ± 0.0–10.4 99.0–99.4 99.1–99.4
LR10 90.0–96.0 ± 5.0–8.0 85.7–100.0 ± 0.0–12.4 92.0–96.0 ± 6.8–10.0 84.0–100.0 ± 0.0–13.7 98.5–98.7 98.9–99.0

Note. AI model results are reported as mean ± 95% confidence intervals across five independent runs (t-interval);
clinician and crowdworker results are mean ± 95% confidence intervals computed using bootstrap resampling
(crowdworker data from [17]). Baseline: Video+Audio input, binary diagnosis prompt; “thinking” enabled for
2.5 series; the diagnosis question presented alongside the other behavioral questions (context). LR5/LR10 denotes
logistic regression with 5/10 features. Direct denotes the direct diagnosis approach (unavailable for human
evaluators). Clinician scores use mean aggregation; crowdworker scores show ranges over mean/mode/median
aggregation from [17].

The performance gap between LLMs and human evaluators has narrowed consider-
ably for the most modern model releases. Gemini 2.5 Pro’s 89.6% accuracy with LR5 falls
within the confidence intervals of clinical expert performance (88.0 ± 9.00%)and approaches
the lower bound of crowdworker performance (92–98%). The LR10 classifier yields slightly
lower performance for LLMs and crowdworkers while demonstrating superior perfor-
mance for clinicians (clinicians: 98.0 ± 3.00%; crowdworkers: 90–96%; Gemini 2.5 Pro:
87.2 ± 1.10%), indicating that different feature sets may capture complementary aspects of
the diagnostic signal. For context, previous fully automated deep learning approaches on
different datasets have achieved accuracies ranging from 76–85%. Our best-performing
model, Gemini 2.5 Pro at 89.6%, exceeds this range while using general-purpose models
without autism-specific training, suggesting that multimodal LLMs may offer advantages
over task-specific architectures in both performance and interpretability.
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Figure 3. Temporal evolution of Gemini model performance on autism behavioral assessment
tasks. The plot shows accuracy progression from September 2024 to June 2025, with a fitted trend
line (excluding 2.5 Flash Lite Preview outlier). Human performance benchmarks are indicated by
horizontal bands: clinician range (88% baseline) and crowdworker performance (92–98% range).
The 2.5 Flash Lite Preview is excluded from the trend analysis due to its inability to process audio,
resulting in significantly degraded performance.

When examining direct diagnosis capabilities—where models provide autism assess-
ments without intermediate classifiers—we observe varying results across the model family.
Gemini 2.5 Pro achieves 90.0% (±2.5) accuracy in direct diagnosis, slightly exceeding its
classifier-mediated performance. Similarly, 2.5 Flash reaches 85.6% (±1.14) and 2.0 Flash
attains 78.0% (±0.00) in direct assessment. Interestingly, some earlier models show higher
direct diagnosis accuracy than their classifier-based approaches (1.5 Flash: 82.4% direct vs.
72.0% LR5; 2.0 Flash Lite: 82.7% direct vs. 69.5% LR5).

Gemini 2.5 Flash Lite Preview achieved only 63.6 ± 0.89% accuracy. Despite receiving
identical videos with full audio tracks as other models, this model consistently failed to
process the audio component. The model repeatedly acknowledged this limitation in its
reasoning outputs, stating, “The absence of audio in the clips is a significant limitation,
and I’ll have to base my assessments primarily on visual cues, noting when the lack of
sound prevents a definitive evaluation,” and “No Audio: This is the most significant
hurdle. It completely prevents me from assessing any aspect related to speech, language,
vocalizations, echolalia, speech patterns, understanding spoken language.” These self-
aware acknowledgments suggest that the model, likely due to its experimental preview
stage, could not access or process the audio stream despite its presence in the input. This
22-percentage-point drop from the standard 2.5 Flash model (85.6% with thinking mode)
resulted in near-random performance on specificity (47.2 ± 1.79%). Due to this limitation
in capturing all necessary behavioral cues, we excluded the 2.5 Flash Lite Preview from our
trend line analysis, as it represents a qualitatively different assessment capability, rather
than a point on the performance evolution trajectory.

All 2.5 series models were evaluated with thinking mode enabled by default (except
2.5 Flash Lite Preview, which defaults to non-thinking mode and was manually set to think-
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ing mode), allowing them to engage in structured reasoning before generating responses.
This capability particularly benefits complex behavioral interpretation, as evidenced by
Gemini 2.5 Pro and 2.5 Flash achieving 89.6% and 85.6% accuracy.

The 2.5 Pro model, Google’s state-of-the-art thinking model, maintains high perfor-
mance across all three evaluation approaches (LR5: 89.6%; LR10: 87.2%; Direct: 90.0%),
suggesting robust feature extraction capabilities that generalize across different diagnostic
frameworks. Furthermore, the high ROC-AUC scores (Gemini 2.5 Pro: 95.6 ± 0.50% for
LR5) indicate excellent discrimination capability, while balanced sensitivity (90.4 ± 2.19%)
and specificity (88.8 ± 2.00%) suggest that the model avoids systematic bias toward either
over- or under-diagnosis.

Computational requirements reveal trade-offs between performance and efficiency.
Processing times range from 14.85 s per video (Gemini 2.0 Flash) to 60.92 s (Gemini 2.5
Pro with thinking), with thinking mode introducing a 3–4× latency increase. The 2.5 Pro
model, while achieving the highest accuracy (89.6%), costs $0.113 per video and requires
approximately one minute of processing time. In contrast, 2.5 Flash with thinking mode
processes videos in 56.29 s at $0.032 per video while maintaining 85.6% accuracy. Thinking
mode generates high computational overhead (205,111–308,020 thinking tokens versus
24,000 output tokens), with 2.5 Flash generating the most thinking tokens (308,020) despite a
lower cost than Pro. The 2.0 Flash model offers efficiency at 14.85 s and $0.008 per video with
80% accuracy, though without interpretable reasoning. For comparison, human annotation
requires 5–10 min at $5–10 per video, making even the slowest LLM configuration 5–10×
faster and 44–88× more cost-effective.

Based on these performance evaluations, we selected the three best-performing mod-
els—Gemini 2.5 Pro, 2.5 Flash, and 2.0 Flash—to represent the LLM group in subsequent
analyses throughout this paper. These models demonstrate the requisite multimodal pro-
cessing capabilities and achieve performance levels that warrant detailed comparison with
human evaluators.

4.2. Reliability and Agreement Analysis

We examined inter-rater reliability (IRR) across LLM models and human evaluators to
understand consistency patterns in behavioral assessment.

4.2.1. Within-Group vs. Between-Group Agreement

Figure 4 presents pairwise weighted kappa coefficients across all rater groups. Indi-
vidual LLM models achieved exceptional within-model consistency when evaluated across
multiple runs: Gemini 2.5 Flash demonstrated near-perfect agreement (κw = 0.996 ± 0.004,
95% CI: [0.992, 1.000]), followed by Gemini 2.0 Flash (κw = 0.989 ± 0.007, 95% CI: [0.982,
0.995]) and Gemini 2.5 Pro (κw = 0.917 ± 0.026, 95% CI: [0.889, 0.941]). This consistency
exceeds human rater agreement, where crowdworkers achieved κw = 0.601 ± 0.163 (95%
CI: [0.413, 0.740]) and clinicians showed κw = 0.582 ± 0.349 (95% CI: [0.165, 0.862]) using
balanced 3-rater sampling per video.

The between-model LLM agreement tells a different story. When comparing responses
across the three LLM variants, agreement dropped to κw = 0.636 ± 0.050 (95% CI: [0.585,
0.685])—comparable to human inter-rater reliability levels. This pattern is evident in the
heatmap (Figure 4), where the off-diagonal LLM-to-LLM cells show moderate agreement
(κw = 0.448–0.670) despite each model’s internal consistency. This shows that different
models have developed distinct assessment strategies in how they approach behavioral
assessment and interpret autism markers.
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Figure 4. Pairwise inter-rater reliability matrix showing weighted kappa coefficients between all rater
groups. Individual LLM models (2.5 Pro, 2.5 Flash, 2.0 Flash) demonstrate near-perfect within-model
consistency (diagonal values κw > 0.91) but moderate between-model agreement (κw = 0.45–0.67).

To understand these divergent strategies, we analyzed reasoning outputs from the
thinking mode across videos where models both agreed and disagreed on diagnoses. Table 2
presents eight exemplar videos demonstrating that models employ different assessment
strategies regardless of their final conclusions. In disagreement cases, such as Video V1,
Gemini 2.5 Pro’s atypical behavior-focused approach (“Name called, and no response. That’s
a red flag”; “The arm flapping is a classic stim”) led to an autism diagnosis, while 2.5 Flash’s
strength-based assessment (“Clear positive social interaction—Logan hugs a caregiver”; “joint
attention and shared activity”) led to the conclusion of neurotypical development.

Remarkably, even when models reached identical conclusions, their assessment strate-
gies remained distinct. For Video V3 (both concluded neurotypical), 2.5 Pro emphasized
social performance (“he is not just singing; he is performing. . . showing social awareness”),
while 2.5 Flash systematically evaluated diagnostic criteria (“run through the typical in-
dicators for ASD”). Similarly, for Video V15 (both concluded autism), 2.5 Pro provided
temporal behavioral mapping with timestamps, while 2.5 Flash organized observations
by diagnostic categories. These consistent strategic differences across both agreement and
disagreement cases demonstrate that models have developed stable, distinct assessment
frameworks: 2.5 Pro employs a clinical, pattern-recognition approach focusing on diagnos-
tic markers, while 2.5 Flash uses a developmental, contextualization approach emphasizing
overall functioning.
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Table 2. Divergent assessment strategies between Gemini models: Different assessment strategies
persist regardless of diagnostic agreement. Claude Opus 4.1 was used to separate the reasoning
outputs into the themes below.

Video Ground Truth Agree? Gemini 2.5 Pro Strategy Gemini 2.5 Flash Strategy

Cases with Different Diagnoses (Disagreement)

V1 ASD No

Diagnosed: ASD
Atypical behavior emphasis: “Name
called, no response. That’s a red flag”;
“arm flapping is a classic stim”; “lining
them up. . . restrictive, repetitive”

Diagnosed: NT
Strength emphasis: “Clear positive
social interaction”; “joint attention and
shared activity”; “typical
developmental trajectories”

V20 NT No

Diagnosed: NT
Social competency focus: “Initiating
with joke. . . understands social
nuances, humor”; “excellent
social-emotional reciprocity”

Diagnosed: ASD
Pattern recognition: “Repetitive
question eliciting repetitive response”;
“could fall under echolalia”; “lacks
genuine turn-taking”

V69 ASD No

Diagnosed: ASD
Exceptional skill flagging:
“2.5-year-old knowing capitals is highly
abnormal”; “example of
hyperlexia. . . points to ASD”

Diagnosed: NT
Social priority: “Child seems quite
engaged”; “maintaining eye contact”;
“developmental trajectory
appears typical”

Cases with Same Diagnoses but Different Strategies (Agreement)

V3 NT Yes

Diagnosed: NT
Performance assessment: “Not just
singing; he is performing”; “showing
social awareness and engagement”;
“obvious give and take”

Diagnosed: NT
Systematic checklist: “Run through
typical indicators for ASD”; “could be
motor mannerisms. . . also common for
neurotypical children”

V15 ASD Yes

Diagnosed: ASD
Temporal mapping: “0:38–0:42:
Caregiver calls name. . . glances briefly”;
“1:15–1:20: Repetitive hand
movements”; chronological
pattern analysis

Diagnosed: ASD
Categorical analysis: “1. Social
Interaction Deficits”;
“2. Communication Challenges”;
“3. Restricted, Repetitive Patterns”

V50 NT Yes

Diagnosed: NT
Cognitive contextualization: “Interest
in capitals is intense, but. . . it’s the way
she engages with the adult”; evaluates
social function of interests

Diagnosed: NT
Conservative assessment: “Video is
extremely short. . . lacks context”;
“impossible to make reliable
assessment”; defaults to NT
when uncertain

ASD = Autism Spectrum Disorder; NT = Neurotypical.

Agreement between LLMs and human raters revealed moderate concordance, with
LLM-clinician agreement ranging from κw = 0.455 to 0.557 and LLM-crowdworker agree-
ment from κw = 0.467 to 0.532. Notably, Gemini 2.5 Pro showed the highest agreement with
clinicians (κw = 0.557± 0.056), suggesting that its reasoning processes may better align with
clinical expertise. The clinician–crowdworker agreement (κw = 0.559 ± 0.165) established
a human baseline that LLMs approach but do not exceed, indicating that model-human
disagreement falls within the range of human inter-rater variability.

4.2.2. Feature-Level and Domain-Level Reliability

Figure 5 decomposes agreement between our best-performing model (Gemini 2.5 Pro)
and human raters at both the feature and domain levels.
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Figure 5. Feature-level and domain-level inter-rater agreement of Gemini 2.5 Pro with clinicians and
Gemini 2.5 Pro with crowdworkers. (Left) Individual behavioral features show high variability in
agreement, with language-related features demonstrating the highest concordance. (Right) Domain-
level aggregation reveals systematic differences, with Stereotyped Behaviors showing notably lower
reliability than the Language and Social domains.

Language-related features showed the most consistent high agreement. Both Expres-
sive Language items achieved strong concordance with both groups (κw = 0.77–0.78 for
both clinicians and crowdworkers). However, Stereotyped Speech features revealed di-
vergence: one item showed excellent agreement (κw = 0.774 with clinicians, κw = 0.782
with crowdworkers), while the other one demonstrated poor concordance (κw = 0.296 with
clinicians, κw = 0.083 with crowdworkers). Similarly, Speech Patterns features showed
disparate reliability: one version achieved moderate agreement (κw = 0.664 with clinicians,
κw = 0.534 with crowdworkers), while another one showed poor concordance (κw = 0.256
with clinicians, κw = 0.429 with crowdworkers).

Social interaction features revealed complex patterns between rater groups. Eye
Contact showed moderate-to-good agreement with both groups (κw = 0.669 with clinicians,
κw = 0.604 with crowdworkers). Shares Excitement demonstrated higher agreement with
crowdworkers (κw = 0.669) than clinicians (κw = 0.586), while Social Overtures showed
the opposite pattern (κw = 0.611 with clinicians vs. κw = 0.472 with crowdworkers).
Emotion Expression and Communicative Engagement showed moderate agreement with
both groups (κw = 0.449–0.586 and κw = 0.552–0.576, respectively).

Stereotyped behavior features showed the poorest reliability. Stereotyped Inter-
ests/Actions item demonstrated near-random agreement (κw = 0.296 with clinicians,
κw = 0.083 with crowdworkers), while Aggression could not be analyzed as Gemini 2.5
Pro showed zero variation, assigning a score of 0 to all videos, preventing meaningful
agreement calculation for this feature.

Domain-level aggregation (Figure 5, right panel) revealed that Gemini 2.5 Pro achieved
comparable agreement with both human groups for Language and Communication features
(clinicians: κw = 0.549, crowdworkers: κw = 0.522) and Reciprocal Social Interaction
features (clinicians: κw = 0.607, crowdworkers: κw = 0.615). However, the Stereotyped
Behaviors and Restricted Interests domains showed poor agreement (clinicians: κw = 0.296,
crowdworkers: κw = 0.083).
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4.3. Feature Attribution and Interpretability

To understand the mechanisms underlying model predictions, we analyzed feature
importance across LLMs and human raters using both permutation importance and random
forest methods.

Figure 6 presents feature importance values computed through permutation impor-
tance (Figure 6a) and random forest analysis (Figure 6b), revealing differences in how LLMs
and humans prioritize behavioral features. Table 3 synthesizes these findings by ranking
the top-5 features for each group using consensus rankings across both methods.

Table 3. Top-5 features per group using permutation and random forest importance rankings.
Consensus rank is computed as the mean of the two method ranks; ties are broken using the better
random forest rank.

Group Consensus Rank Feature Permutation Random Forest

LLMs
1 Stereotyped Speech-1 2 2
2 Expressive Language-2 4 1
3 Expressive Language-1 3 3
4 Eye Contact 1 5
5 Shares Excitement 5 4

Crowdworkers
1 Shares Excitement 3 1
2 Eye Contact 1 4
3 Emotion Expression 4 2
4 Social Overtures 5 3
5 Communicative Engagement 2 8

Clinicians
1 Expressive Language-2 3 1
2 Expressive Language-1 2 2
3 Stereotyped Speech-1 1 3
4 Speech Patterns-2 6 4
5 Eye Contact 7 5

Note. Numerical suffixes (−1, −2) distinguish features adapted for different developmental levels.

The LLM models demonstrate a clear prioritization of language-related features, with
Stereotyped Speech and both Expressive Language items occupying three of their top five
positions. This language-centric approach achieves particularly high importance values
in the random forest analysis, where Expressive Language emerges as the top feature
with importance value of 0.162 ± 0.063. Notably, Eye Contact, while showing the highest
permutation importance for LLMs (0.081 ± 0.124), drops to fifth in random forest analysis
(0.117 ± 0.070), suggesting that its impact may be more direct, rather than capturing
complex interactions.

Crowdworkers exhibit a different assessment strategy, prioritizing social interaction
features. Shares Excitement ranks as their most important feature overall, achieving the
highest random forest importance (0.210 ± 0.090) among all features across all groups.
Emotion Expression shows similarly high importance (0.209 ± 0.083), representing a
dramatic 3.7-fold difference compared to LLMs’ valuation of this feature (0.044 ± 0.033 in
random forest). This suggests crowdworkers rely heavily on emotional cues that LLMs
systematically underweight.

Clinicians present a balanced approach that bridges the LLM and crowdworker
strategies. They prioritize language features (Expressive Language: 0.146 ± 0.066 and
0.140 ± 0.069, Stereotyped Speech: 0.136 ± 0.065 in random forest) similar to LLMs, while
also incorporating Speech Patterns (0.132 ± 0.078) as their fourth most important feature.
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(a)

(b)

Figure 6. Feature importance analysis across LLMs, crowdworkers, and clinicians using (a) per-
mutation importance measuring direct causal impact and (b) random forest capturing non-linear
relationships. Error bars represent 95% confidence intervals from bootstrap analysis. (a) Permutation
importance; (b) random forest importance.

The comparison between permutation and random forest methods reveals both consis-
tencies and divergences in feature attribution. While both methods generally agree on top
features within each group, they capture different aspects of feature contribution. Permu-
tation importance, measuring direct causal impact through feature corruption, produces
relatively sparse importance distributions with many features showing near-zero values.
Random forest importance, capturing non-linear relationships and feature interactions,
yields more distributed importance values with clearer differentiation between features.

This comparison is particularly revealing for features like Eye Contact, which shows
the highest permutation importance for LLMs (0.081) but moderate random forest im-
portance (0.117), suggesting its contribution is more direct than interactive. Conversely,
Communicative Engagement shows minimal permutation importance for crowdworkers
(0.020) but high random forest importance, indicating this feature’s value emerges through
complex interactions with other behavioral markers.
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The differences in importance magnitudes between methods—with random forest
values often 5–10 times higher than permutation values—reflect their different measure-
ment approaches. Permutation importance’s lower values suggest that individual feature
corruption has a modest impact on model predictions, while random forest’s higher values
indicate features contribute more through their participation in decision trees.

4.4. Video Characteristics and Error Analysis

To understand the factors influencing model-human agreement and identify potential
sources of error, we analyzed the relationship between video-level characteristics and
inter-rater agreement across all 50 videos. Specifically, we computed the mean pairwise
weighted kappa between each of the three top-performing LLMs (Gemini 2.5 Pro, 2.5 Flash,
and 2.0 Flash) and each human group (crowdworkers and clinicians), yielding a composite
measure of LLM-human consensus for each video.

4.4.1. Distribution of Agreement and Uncertainty

Figure 7 presents the distribution of video-level agreement metrics across our dataset.
The weighted kappa scores exhibit high variability (mean κw = 0.321± 0.257, range: −0.181
to 0.802), indicating that while models achieve consensus on certain videos, they disagree on
others. The distribution’s wide spread and inclusion of negative agreement values suggest
that model consistency is highly video-dependent, rather than uniformly reliable. The cor-
responding distribution of 95% confidence interval error margins (mean = 0.300 ± 0.084)
further underscores this heterogeneity, with some videos yielding highly uncertain agree-
ment estimates.

Figure 7. Distribution of video-level LLM-human agreement metrics across 50 videos, computed as
the mean pairwise weighted kappa between each LLM and each human group. Left: distribution of
weighted kappa scores showing high variability (mean κw = 0.321 ± 0.257). Right: distribution of
95% CI error margins indicating heterogeneous uncertainty levels.

4.4.2. Diagnosis as the Primary Driver of Agreement

Among all video characteristics examined, the presence of an autism diagnosis showed
a meaningful effect on model agreement (t(48) = −3.704, p < 0.001, Cohen’s d = 1.048), as
illustrated in Figure 8. This large effect size indicates that videos from children with autism
(M = 0.441, SD = 0.213) demonstrated higher model-human agreement than neurotypical
videos (M = 0.202, SD = 0.243). The box plots reveal this separation, with autism cases
showing both higher median agreement and less variability.
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Figure 8. Relationship between video characteristics and model agreement (weighted kappa). Box
plots show comparisons for categorical variables (autism diagnosis and gender) with t-test statistics,
while scatter plots show correlations for continuous variables (age and video length). Error bars
represent 95% bootstrap confidence intervals.

In contrast, the other characteristics showed no meaningful relationships with agreement
levels. Gender had no significant effect (t(48) = 0.030, p = 0.976, Cohen’s d = −0.009), with
nearly identical agreement for female (M = 0.323, SD = 0.252) and male videos (M = 0.320,
SD = 0.266). Similarly, neither child age (r = 0.034, p = 0.817) nor video length (r = −0.031,
p = 0.832) showed meaningful correlations with agreement levels.

4.4.3. Case Analysis: High vs. Low Agreement Videos

To understand the qualitative factors driving agreement patterns, we examined
videos at the extremes of the agreement distribution. The three highest agreement videos
(κw > 0.755) comprised two autism cases and one neurotypical case, while the lowest
agreement videos (κw < −0.096) included one autism case and two neurotypical cases.

High-Agreement Cases: An analysis of model reasoning reveals that LLM–human
consensus emerges when behavioral markers are unambiguous. In video V176 (κw = 0.755,
with autism), all models consistently identified the child’s repetitive spoon-balancing be-
havior, complete absence of verbal communication, and persistent lack of response to
name-calling as clear autism indicators (Figure 9a). Similarly, in V39 (κw = 0.780, neurotyp-
ical), models unanimously recognized age-appropriate conversational skills, sustained eye
contact, and reciprocal social engagement. The high agreement on V41 (κw = 0.802, with
autism) stemmed from the consistent detection of repetitive vocalizations (“uh uh uh”),
episodes of “zoning out,” and limited functional communication (Figure 9b).
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(a) High Agreement—V176 (with autism, κw = 0.755)

Repetitive spoon-balancing behavior with persistent lack of social response

(b) High Agreement—V41 (with autism, κw = 0.802)

Episodes of engagement followed by “zoning out” with stereotyped behaviors

(c) Low Agreement—V64 (with autism, κw = −0.181)

Engaged drawing activity with apparent social interaction causing model disagreement

(d) Low Agreement—V43 (Neurotypical, κw = −0.131)

Age-appropriate iPad use with ambiguous behavioral markers

Figure 9. Representative frames from videos with highest and lowest model agreement. High agreement
videos (a,b) show unambiguous behavioral markers that models consistently identify. Low agreement
videos (c,d) present subtle or age-ambiguous behaviors that trigger divergent model interpretations.

Low-Agreement Cases: Disagreement primarily arose in videos presenting ambigu-
ous or borderline behaviors. In V64 (κw = −0.181, with autism), Gemini 2.5 Pro interpreted
the child’s behavior as neurotypical based on apparent conversational ability and social
engagement, while 2.5 Flash identified subtle echolalia and atypical language patterns
consistent with autism (Figure 9c). This divergence suggests that models may have different
sensitivity thresholds for detecting subtle autism markers. The low agreement on V43
(κw = −0.131, neurotypical) resulted from differing interpretations of age-appropriate be-
havior, with models disagreeing on whether certain behaviors represented developmental
delays or normal variation for 2-year-olds (Figure 9d).

4.4.4. Systematic Error Pattern Analysis

Analysis of videos with systematic disagreement (negative weighted kappa) revealed
failure cases. Models exhibited deterministic behavior—approximately 95% of features
showed zero variance across five independent runs. The most severe disagreement (V64,
κw = −0.181, 66-month-old female with ASD) exposed complete diagnostic failure. Gemini
2.5 Pro assigned all zeros across all five runs with perfect consistency (std = 0.00), stating
“Eye contact? Natural and appropriate. . . I don’t think so [autism]. Score: 0,” entirely
missing the autism diagnosis. Conversely, 2.5 Flash assigned identical high severity ratings
across all runs (std = 0.00) despite generic thinking outputs (“I’ll watch. . . I’ll score. . . Let’s
get started”) lacking specific behavioral observations.

Most concerning was the thinking-rating disconnect. In V94 (neurotypical 24-month-
old), Flash explicitly concluded “the child shows no signs of autism. . . Score 0” in its
reasoning yet consistently rated social initiation at maximum severity across all runs—a
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direct contradiction between verbal reasoning and numerical output. V51 revealed diag-
nostic misinterpretation, with Pro consistently pathologizing advanced knowledge: “The
capital quiz is the defining feature. . . clear pattern emerges,” diagnosing autism (q31 = 1) in
all runs. Notably, while Flash showed perfect consistency, Pro demonstrated high variance
for some features, suggesting architectural differences in decision stability.

4.5. Ablation Studies and Component Analysis

To understand the individual contributions of key experimental factors to model
performance, we conducted systematic ablation studies examining four components: audio
input processing, thinking mode activation, prompt format design, and behavioral context
inclusion. These experiments reveal the essential ingredients for optimal LLM-based behav-
ioral assessment and provide insights into the mechanisms underlying model performance.

4.5.1. Effect of Audio Input

Figure 10a demonstrates the profound impact of audio information on diagnostic
accuracy, with all models experiencing performance degradation when restricted to visual
information alone. The removal of audio channels results in accuracy drops ranging from
11.6% to 25.6% across different model-classifier combinations.

(a) (b)

(c) (d)

Figure 10. Ablation study results: (a) effect of audio input, (b) effect of thinking mode, (c) effect of
prompt format, (d) effect of context (direct diagnosis).

The most dramatic degradation occurs in the 2.0 Flash model, where LR5 accuracy
drops from 80.0% to 54.4% (−25.6 percentage points), representing a 32% relative perfor-
mance loss. Similarly, 2.5 Flash drops from 85.6% to 62.0% (−23.6 percentage points) for
LR5, while 2.5 Pro falls from 89.6% to 69.2% (−20.4 percentage points). Even the direct
diagnosis approach, which bypasses feature-based classification, shows severe degradation,
with 2.5 Pro dropping from 90.0% to 68.8% (−21.2 percentage points).
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Interestingly, the 2.0 Flash Lite model presents an anomalous pattern, showing minimal
change or even slight improvement without audio (LR5: 69.5% to 71.2%, +1.7 percentage
points), suggesting this model may have already adapted to limited audio input. However,
its baseline performance of 69.5% aligns closely with the degraded performance of audio-
deprived models, validating that ∼70% accuracy represents the practical ceiling for video-
only assessment. This finding gains additional context when considered alongside the 2.5
Flash Lite Preview’s performance—which consistently reported inability to process audio
channels—indicating the convergence of intentionally audio-deprived models with the
Flash Lite Preview’s baseline.

4.5.2. Effect of Thinking Mode

The activation of thinking mode in Gemini 2.5 Flash produces performance improve-
ments across all evaluation metrics (Figure 10b). With thinking enabled, the model achieves
85.6% accuracy on LR5 classification, compared to 72.4% without thinking—a 13.2 percent-
age point improvement representing an 18.2% relative gain.

This enhancement extends consistently across classifiers: LR10 improves from 72.0%
to 79.6% (+7.6 points), while direct diagnosis increases from 72.0% to 85.6% (+13.6 points).
The magnitude of these improvements effectively bridges the performance gap between
model generations—a 2.5 Flash model without thinking performs comparably to 1.5 series
models, while the thinking-enabled version approaches the 2.5 Pro performance ceiling.

4.5.3. Effect of Prompt Format

The impact of prompt format shows heterogeneity across models (Figure 10c). For
2.5 Flash, the binary format outperforms the three-choice alternative (LR5: 85.6% vs. 79.2%,
−6.4 percentage points). Meanwhile, 2.5 Pro shows the opposite pattern, with the three-
choice format yielding marginally better LR5 performance (93.2% vs. 89.6%, +3.6 percentage
points, though this doesn’t extend to direct diagnosis (90.0% for both formats).

The most extreme response occurs in 2.0 Flash Lite’s direct diagnosis, where the
three-choice format degrades performance from 82.7% to 58.4% (−24.3 percentage points).

4.5.4. Effect of Behavioral Context

The inclusion of behavioral context through the feature-extraction questions reveals
a clear generational progression in model autonomy (Figure 10d). Earlier models show
strong context dependency: 1.5 Flash improves from 66.4% to 82.4% with context (+16.0 per-
centage points), while 2.0 Flash Lite gains similarly from 66.0% to 82.7% (+16.7 percent-
age points).

In contrast, the 2.5 series models demonstrate context independence. 2.5 Flash shows
virtually no change (85.6% with context vs. 86.0% without, −0.4 percentage points), while
2.5 Pro shows only modest improvement with context (90.0% vs. 85.6%, +4.4 percentage
points). The 2.0 Flash model shows a slight degradation with context (78.0% vs. 80.0%,
−2.0 percentage points).

5. Discussion
This study presents the first evaluation of multimodal large language models’ ability

to provide accurate feature measures useful for predicting autism given short naturalistic
videos. Human-in-the-loop AI has shown promise in clinical-grade performance in digital
autism diagnostics, with crowdsourcing approaches like those of Washington et al. [17]
achieving 92–98% accuracy but requires human resources that could ultimately be difficult
to scale. Similarly, recent efforts to automate the process using computer vision and
traditional machine learning show promise but still require humans in the loop. The
advancements of multimodal LLMs has enabled us to test the hypothesis that LLMs
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could, given proper engineering and tuning, lead to new advances in automation of
diagnostic approaches.

5.1. Overall Performance Benchmarking

Our results (Figure 3 and Table 1) demonstrate a clear trajectory: the newer the LLM
generation, the better the performance. Accuracy improved from 72.0% in Gemini 1.5 Flash
to 89.6% in Gemini 2.5 Pro using the LR5 classifier—representing a 24.4% relative improve-
ment over 15 months of model development. This progression follows a consistent upward
trajectory visualized with the trend line in Figure 3, showing a least squares regression
with a slope of 0.0402 accuracy percentage points per day. While Gemini 2.5 Pro’s 89.6%
accuracy does not quite reach the performance of human-in-the-loop approaches (92–98%
for crowdworkers), it falls within the confidence intervals of clinical expert performance
(88.0 ± 9.00%), and the trend suggests continued improvement. Though this assumes
sustained linear advancement—an assumption that warrants caution given potential di-
minishing returns, as evidenced in neural scaling laws and other fields of research [65–67].
Nevertheless, the current trajectory suggests that multimodal LLMs could match or perhaps
even surpass the performance of humans-in-the-loop in the future, which opens up some
exciting opportunities for scale and reach in diagnostics for autism (and beyond).

The narrowing performance gap reveals important patterns. When examining direct
diagnosis capabilities—where models provide autism assessments without intermediate
classifiers—newer models show promising results. Some earlier models even demonstrate
higher direct diagnosis accuracy than their classifier-based approaches (1.5 Flash: 82.4%
direct vs. 72.0% LR5), suggesting that end-to-end behavioral assessment may bypass certain
limitations of feature-based classification.

The convergence of performance shown by top-performing models and human evalu-
ators at 90% accuracy, suggests a potential performance ceiling. This performance plateau
may reflect ambiguities in behavioral assessment, rather than model limitations, with both
state-of-the-art LLMs and experienced human raters converging at similar performance
thresholds. The consistency of this ceiling across different evaluation methods and rater
types suggests that challenges in video-based behavioral assessment may require additional
context or longer observation periods to overcome. While these headline performance
metrics are promising, understanding the underlying reliability patterns is essential for
clinical deployment.

5.2. Reliability and Agreement Analysis

Building on the performance findings, our reliability analysis (Figure 4) reveals
nuances beneath these metrics. The “agreement paradox”—high internal consistency
(κw > 0.91) coupled with moderate between-model agreement (κw = 0.636)—suggests
that different architectures develop distinct assessment strategies, rather than converging
on universal patterns. This pattern, visually evident in the heatmap (Figure 4) where
off-diagonal LLM-to-LLM cells show moderate agreement despite each model’s internal
consistency, indicates that while each model applies its learned representations consis-
tently, different architectures develop distinct approaches to behavioral interpretation. This
finding challenges assumptions about ground truth in behavioral diagnosis and raises
questions about whether diagnostic consistency or diversity better serves clinical needs.

The observed agreement structure—high within-model consistency paired with mod-
erate between-model agreement—presents both opportunities and challenges for clinical
deployment. The near-deterministic behavior of individual models (κw > 0.91) ensures
reproducible assessments, addressing a limitation of human evaluation where rater fatigue,
training drift, and subjective interpretation introduce variability. However, the moder-
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ate between-model agreement (κw = 0.636) suggests that ensemble methods combining
multiple LLMs might not yield the variance reduction benefits typically expected from
aggregating independent assessments. This reliability profile contrasts sharply with human
raters, who exhibit moderate agreement both within groups (κw ≈ 0.58–0.60) and between
individuals. While human variability might capture genuine ambiguity in behavioral
presentation, LLM consistency could either represent more reliable feature extraction or
potentially indicate overfitting to specific visual patterns.

The agreement patterns also raise questions about the nature of behavioral assessment
reliability. Traditional clinical practice assumes that higher inter-rater agreement indicates
better assessment quality. However, our results suggest a trade-off: LLMs offer consistency
at the potential cost of clinical specificity, while human raters provide varied viewpoints
that may better capture the heterogeneous nature of autism presentation. Future work
should investigate whether the high internal consistency of LLMs translates to improved
diagnostic accuracy in prospective clinical trials, or whether maintaining some degree of
assessment diversity is beneficial for capturing the full spectrum of autistic behaviors.

The systematic differences revealed in Table 2—persisting across both agreement and
disagreement cases—provide evidence that models have developed stable, distinct assess-
ment frameworks. We propose three mechanisms underlying these assessment strategies:

First, consistent strategic frameworks: The analysis of thinking outputs reveals that
each model maintains its assessment approach, regardless of the final diagnosis. Gemini 2.5
Pro consistently employs clinical pattern recognition (temporal mapping, atypical behavior
emphasis, exceptional skill identification), while 2.5 Flash consistently uses developmental
contextualization (systematic checklists, categorical analysis, conservative interpretation).
This stability within models (κw > 0.91) despite divergence between models (κw = 0.636)
indicates learned strategic preferences, rather than random variation.

Second, complementary attention hierarchies: The models prioritize different be-
havioral channels even when observing identical footage. Pro models attend primarily to
specific diagnostic markers (stimming, echolalia, hyperlexia) and behavioral patterns, while
Flash models emphasize social engagement quality and developmental appropriateness.
For instance, in Video V50, both concluded neurotypical, but Pro focused on whether
special interests served social functions, while Flash emphasized assessment limitations.

Third, alignment with clinical schools of thought: The divergence mirrors debates
in autism diagnosis. Pro’s approach aligns with DSM-5 criteria-based medical models
that catalog specific deficits, while Flash’s approach reflects strength-based developmental
frameworks that consider overall functioning. This parallel to human clinical training
suggests that pre-training exposure to different types of behavioral content may shape
these emergent assessment strategies.

The persistence of these strategies across agreement cases (Table 2, rows 4–6) demon-
strates that inter-model disagreement reflects systematic philosophical differences, rather
than random error. When both models diagnose autism (V15), Pro provides timestamped
behavioral mapping while Flash organizes by diagnostic categories—reaching the same
conclusion through entirely different analytical paths.

The feature-level reliability patterns revealed in Figure 5 have profound implications
for the future development of automated autism assessment systems. The performance
gradient across domains—from strong language agreement to poor stereotyped behavior
detection—provides a roadmap for targeted improvements. The consistently high agree-
ment on Expressive Language features (κw = 0.77–0.78) validates that current multimodal
LLMs can reliably assess verbal communication, likely benefiting from extensive conversa-
tional data in their pre-training. However, the dramatic failure with Stereotyped Behaviors
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(κw = 0.08–0.30) exposes a limitation that must be addressed before these systems can
achieve comprehensive diagnostic capability.

The feature-specific divergence within similar behavioral constructs particularly high-
lights areas requiring focused innovation. The fact that one Stereotyped Speech item
achieves excellent agreement (κw = 0.774–0.782) while another shows poor concordance
(κw = 0.083–0.296) suggests that subtle differences in feature operationalization significantly
impact model performance. This indicates that future improvements will likely come from:
(1) developing feature-specific fine-tuning approaches that target underperforming be-
havioral markers, (2) creating specialized attention mechanisms for detecting repetitive
patterns and restricted interests that may be temporally distributed across video segments,
(3) incorporating clinical knowledge graphs to better understand the relationships be-
tween different manifestations of similar behaviors, and (4) augmenting training data with
synthetic examples of rare but diagnostically important behaviors.

The moderate performance on social interaction features (κw = 0.45–0.67) represents
both a challenge and an opportunity. These features require integrating multiple modali-
ties—facial expressions, body language, vocal prosody, and contextual cues—suggesting
that advances in multimodal fusion architectures could lead to further improvements.
The differential agreement patterns between crowdworkers and clinicians on features like
Shares Excitement (κw = 0.669 vs. 0.586) further indicate that incorporating diverse human
perspectives during model development could enhance robustness. As foundation models
continue to evolve with better compositional understanding and temporal reasoning capa-
bilities, we anticipate that the current performance ceiling on complex social behaviors will
progressively rise, ultimately enabling comprehensive behavioral assessment comparable
to expert clinical evaluation.

5.3. Feature Attribution and Interpretability

Complementing our agreement analysis, the difference in feature prioritization be-
tween LLMs and human raters further underscores these distinct assessment strategies.
Our analysis (Figure 6 and Table 3) reveals different approaches: LLMs prioritize language-
related features, with Stereotyped Speech and Expressive Language occupying three of
their top five positions, while crowdworkers heavily weight social-emotional behaviors,
with Shares Excitement achieving the highest importance (0.210 ± 0.090) among all features
across all groups. The 3.7-fold difference in Emotion Expression importance between
crowdworkers and LLMs suggests these systems may be detecting complementary rather
than identical behavioral signals, thereby capturing different aspects of the autism pheno-
type than traditional human observation. This language-centric approach by LLMs, while
achieving high accuracy, may reflect biases in their training data toward verbal commu-
nication patterns, potentially limiting effectiveness for assessing non-verbal or minimally
verbal individuals who represent approximately 30% of the autism spectrum.

Feature extraction stage serves as the interpretable interface between raw behavioral
observations and diagnostic decisions. Our results reveal that the success of LLM-based
assessment depends on how effectively models can map video content to structured be-
havioral features. The divergent performance across feature categories (high for language,
moderate for social, poor for stereotyped behaviors) directly traces back to the extraction
process, suggesting that different behavioral domains require distinct extraction strategies.
The high within-model consistency in feature extraction indicates that LLMs apply learned
patterns systematically, though the moderate between-model agreement suggests multiple
valid extraction approaches exist. Future improvements will likely emerge from optimizing
this extraction stage through techniques such as: (1) feature-specific prompting that pro-
vides detailed behavioral anchors for each score level, (2) hierarchical extraction that first
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identifies broad behavioral categories before detailed scoring, (3) temporal segmentation
to capture time-varying behaviors, and (4) multimodal fusion strategies that optimally
combine audio and visual signals for each feature type.

5.4. Video Characteristics and Error Analysis

The practical implications of these assessment differences become clear when ex-
amining video-level performance (Figures 7 and 8). The effect of autism diagnosis on
model-human agreement (t(48) = −3.704, p = 0.001, Cohen’s d = 1.048) reveals poten-
tial diagnostic bias that requires careful consideration. Videos from children with autism
showed substantially higher agreement (M = 0.441, SD = 0.213) compared to neurotyp-
ical videos (M = 0.202, SD = 0.243), with this large effect size indicating that models
demonstrate higher reliability when confirming autism cases than when ruling them out.
This asymmetric performance could impact screening sensitivity and specificity differ-
ently across the diagnostic spectrum. This pattern implies that, while LLMs may excel
in identifying clear autism cases, they may be less reliable for borderline or neurotypical
cases, a limitation with significant implications for population screening, in which both
false positives and false negatives are costly. The presence of negative agreement values
in some videos indicates that models can actively disagree beyond chance levels, sug-
gesting different interpretative frameworks rather than random noise. The analysis also
reveals that longer videos (mean = 190.7 s for low agreement vs. 98.3 s for high agreement)
paradoxically yield lower agreement, possibly because extended observations provide
more opportunities for models to identify contradictory behavioral evidence. This finding
challenges the assumption that more data necessarily improves diagnostic consensus and
suggests that video duration and content quality require careful optimization.

Our error analysis reveals that 95% of features showed zero variance across indepen-
dent runs, indicating deterministic outputs. The thinking–rating disconnect represents an
architectural flaw. When Flash explicitly states “no signs of autism” yet assigns a score
of 3, or when Pro declares eye contact “natural and appropriate” while missing autism
entirely, they demonstrate disconnected processing pathways between verbal reasoning
and diagnostic scoring. This separation means correct behavioral observation can coexist
with completely contradictory diagnostic output—which is clinically unacceptable when
reasoning must justify conclusions.

The combination of deterministic outputs, thinking–rating contradictions, and overcon-
fident incorrect diagnoses indicates these models lack the calibrated uncertainty essential
for clinical practice. The high variance observed in some Pro ratings versus Flash’s per-
fect consistency suggests different architectural approaches. Until architectures introduce
appropriate stochastic variation reflecting assessment uncertainty, these systems remain
unsuitable for diagnostic decisions, for which deterministic errors could have serious
consequences. Beyond these inherent video characteristics, our ablation studies identify
modifiable technical factors that influence performance.

5.5. Ablation Studies and Component Analysis

Moving from observational patterns to controlled experiments, our ablation studies
(Figure 10) establish technical requirements for viable deployment. The audio requirement
proves essential, with removal causing degradation (average −18.9 percentage points).
The introduction of explicit reasoning capabilities through thinking mode in the 2.5 series
results in average improvements of +11.5 percentage points demonstrating how structured
reasoning enhances the model’s ability to integrate complex behavioral patterns. This
structured reasoning likely facilitates the integration of multiple behavioral cues, temporal
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pattern recognition, and contextual interpretation—cognitive processes that mirror clinical
assessment strategies.

The ablation study of prompt format reveals that prompt engineering must be tailored
to specific model architectures, rather than assuming universal design principles. While
we expected the three-choice format (including “some evidence of autism”) to reduce
conservative bias and improve sensitivity, the heterogeneous responses suggest that mod-
els have developed different internal representations of diagnostic certainty, with some
benefiting from graduated expression while others require binary clarity. Furthermore,
the study of the context effect shows a generational progression in context independence.
Earlier generations (1.5 and Flash Lite variants) show strong dependency on the structured
behavioral decomposition provided via the feature-aligned questions (+16–17 percentage
points with context). In contrast, the 2.5 series models have developed sufficient inherent
behavioral understanding to reach accurate diagnoses through direct video analysis alone.

These components exhibit largely independent effects, rather than synergistic interac-
tions. The performance gains from the thinking mode remain consistent regardless of the
prompt format, while audio degradation uniformly impacts all configurations. This addi-
tive relationship suggests that each component addresses distinct aspects of the behavioral
assessment challenge: audio provides essential diagnostic signals, thinking enables com-
plex reasoning, context offers structured assessment for less capable models, and prompt
format influences decision boundaries in model-specific ways. These findings establish
guidelines for an optimal configuration: audio-visual inputs are mandatory, thinking capa-
bilities should be activated when available, and both prompt format and context inclusion
should be empirically optimized for each model generation.

5.6. Limitations and Future Directions

Despite the promising trajectory demonstrated in our results, there are several limita-
tions of this study that we discuss here. The crowdworkers in our comparison dataset were
selected specifically for their ability to provide answers that lead to strong performance of
the LR5/10 models, rather than providing independently verified correct answers, which
may create an unfair comparison when evaluating against clinicians. Additionally, our
evaluation focuses on behavioral features consistent with widely used diagnostic frame-
works, potentially missing novel behavioral markers that LLMs might detect but that fall
outside traditional assessment approaches. The brief video segments may not capture
the full complexity of behavioral presentation that emerges over longer observation peri-
ods. Furthermore, our dataset relies on parent-reported autism diagnoses from YouTube
videos, rather than clinically confirmed diagnoses through standardized diagnostic in-
struments, which may introduce classification errors, though prior validation has shown
reasonable concordance with clinical severity ratings in this dataset [17]. Additionally,
prior work demonstrated that the autism cases in these 50 videos skew toward more se-
vere presentations, creating a large separation between ASD and neurotypical groups in
the behavioral feature space [17]. This severity bias likely inflates performance metrics
compared to real-world screening scenarios involving subtle or early-stage presentations.
Future work should evaluate models on more challenging datasets with less pronounced
autism characteristics and narrower decision boundaries between diagnostic groups.

Additionally, the curated nature of the YouTube videos, with clear visibility and good
recording quality, may overestimate real-world performance where videos might have poor
lighting, unstable camera work, partial occlusions, or background distractions. Cultural
variations in behavioral expression, parent–child interaction styles, and social norms are
also not adequately represented in this primarily English-speaking, Western-context dataset.
Future work should evaluate model performance on more diverse and challenging video
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conditions, including clinical recordings with varying quality, multicultural populations,
and different home environments.

Acknowledging these constraints, this work establishes multimodal LLMs as a promis-
ing foundation for expanding access to autism detection. While current models do not quite
match the best human-in-the-loop approaches, the rapid advancement observed, combined
with the elimination of human infrastructure requirements, positions these systems as
potentially viable alternatives to traditional assessment methods.

The robustness of these models to real-world video conditions remains an important
area for future investigation. While our evaluation used curated videos with clear visibility
and good quality, clinical deployment would encounter varying lighting conditions, camera
angles, partial occlusions, and audio interference. Additionally, cultural factors significantly
influence behavioral expression and social interaction patterns, and our primarily Western-
context dataset cannot fully capture this diversity. Promisingly, the strong performance of
general-purpose LLMs without task-specific training suggests that they may have learned
robust representations from their diverse pre-training data that could generalize to varied
conditions. Future studies should systematically evaluate performance degradation under
challenging recording conditions and across culturally diverse populations to establish
deployment readiness guidelines.

Translating these capabilities into accessible tools will require addressing both techni-
cal and ethical challenges. The development of lightweight model variants for resource-
constrained settings, privacy-preserving federated learning approaches, and culturally
adapted assessment protocols will be essential for equitable global deployment. Establish-
ing clear regulatory frameworks adapted to foundation models, interpretability methods
that translate model decisions into clinically meaningful explanations, and guidelines for
accountability in AI-mediated diagnosis must precede clinical implementation. The path
forward, therefore, requires careful attention to bias mitigation, clinical validation, and eth-
ical deployment, with sustained collaboration between AI researchers, clinicians, ethicists,
and affected communities to ensure that technical capabilities do not outpace deployment
readiness. The technical trajectory demonstrated here suggests that automated and accurate
behavioral assessments could be possible. As these models continue to improve, they offer
the potential to address the challenge of measuring child developmental delays early and
often in the critical windows of brain plasticity.

6. Conclusions
This study is an initial evaluation of the ability of multimodal large language models

to measure features used by machine learning models that have validated accuracy for
classifying autism versus other delays and typical development. Our analysis of seven
Gemini model variants across three generations reveals performance improvements, with
accuracy advancing from 72.0% in Gemini 1.5 Flash to 89.6% in Gemini 2.5 Pro using
validated autism detection classifiers—a 24.4% relative improvement over 15 months of
model development.

Our results highlight the potential and limitations of LLM-based behavioral assess-
ment. While the best-performing model (Gemini 2.5 Pro) achieves 89.6% classification
accuracy, approaching the 92–98% range of carefully selected crowdworkers, our analysis
reveals differences in assessment strategies. LLMs demonstrate high within-model con-
sistency (κw > 0.91) compared to moderate human agreement (κw ≈ 0.58–0.60), prioritize
language-related features over the social–emotional cues that crowdworkers emphasize,
and show stronger performance on videos with clear autism symptoms than those with
ambiguous or complex signals. These patterns suggest that LLMs may be learning comple-
mentary behavioral signals, rather than simply replicating human judgment. Furthermore,
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the effect of autism diagnosis on model–human agreement (t(48) = −3.704, p = 0.001,
Cohen’s d = 1.048) indicates asymmetric performance that must be carefully considered in
clinical applications.

Our ablation studies establish technical requirements and limitations for deployment:
audio input proves essential (18.9 percentage point average degradation without audio),
thinking mode capabilities provide strong improvements (+11.5 percentage points on
average), prompt format shows model-specific effects with binary formats generally out-
performing three-choice alternatives, and newer model generations demonstrate increasing
independence from structured behavioral assessment.

There are several opportunities for future work. First, extending evaluation to larger
datasets, longer video segments, and diverse clinical populations, including minimally ver-
bal individuals who represent approximately 30% of the autism spectrum, will be needed
to establish generalizability. Second, developing hybrid approaches that combine LLM con-
sistency with human clinical insight may optimize both reliability and diagnostic validity.
Third, it will be useful to explore whether ensemble methods that combine multiple LLM ar-
chitectures can overcome the moderate between-model agreement to achieve performance
gains. Fourth, establishing regulatory frameworks and interpretability methods specific to
foundation models in clinical diagnosis will be needed for responsible deployment.

The improvement trajectory observed shows promise for the use of LLMs in the
process of scaling autism diagnosis. However, realizing this potential will require continued
collaboration between AI researchers, clinicians, ethicists, and autism communities to
ensure that technical capabilities translate into equitable, accessible, and clinically valid
diagnostic tools that augment, rather than replace, human expertise.

Author Contributions: Conceptualization, P.A., M.H., P.W. and D.P.W.; methodology, P.A., M.H., P.W.
and D.P.W.; software, P.A.; validation, P.A., P.W. and D.P.W.; formal analysis, P.A., P.W. and D.P.W.;
investigation, P.A., P.W. and D.P.W.; resources, P.W. and D.P.W.; data curation, P.A., A.K., K.D., P.W.
and D.P.W.; writing—original draft preparation, P.A.; writing—review and editing, P.A., M.H., A.J.,
A.K., K.D., P.W. and D.P.W.; visualization, P.A.; supervision, P.W. and D.P.W.; project administration,
A.K., P.W. and D.P.W.; funding acquisition, P.W. and D.P.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the National Institutes of Health (DP2EB035858, R01LM014342,
R01LM013364) and the Stanford Center for Digital Health. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National Institutes of Health.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Stanford University (protocol code
39562; approved: 21 March 2023.

Informed Consent Statement: Informed consent was waived for video data sourced from
YouTube.com. Informed consent was obtained from all human video raters. The images in Figure 9
are all sourced from publicly available Youtube videos. These YouTube videos were accessed and
downloaded for use between 2017 and 2019.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author due to Stanford University’s data use restrictions.

Acknowledgments: During the preparation of this manuscript, the authors used Claude Opus 4.1 for
the purposes of drafting and editing text, refining paper structure, formatting results presentations,
and improving manuscript clarity and coherence. Additionally, the authors used Gemini 2.5 Flash
Image (Nano Banana) to generate some of the icons used in Figure 1. The authors have reviewed and
edited the output and take full responsibility for the content of this publication.

https://www.youtube.com/


Algorithms 2025, 18, 687 31 of 34

Conflicts of Interest: The authors declare no conflicts of interest. The funders played no role in
the design of the study, in the collection, analyses, or interpretation of data, in the writing of the
manuscript, or in the decision to publish the results.

Appendix A. Gemini Model Prompt and Behavioral Assessment Questions
Appendix A.1. Standardized Prompt for Gemini Models

The following prompt was provided to all Gemini model variants:

You are a behavioral analyst observing short videos of children interacting with
a caregiver. Your task is to answer a set of structured multiple-choice questions
about the child’s behavior based on the video. Each question is scored on a
scale from 0 to 3. You should provide the most appropriate score based on your
observation. Even if the behavior is not directly shown, use indirect evidence
(e.g., body language, facial expression, context) to infer the most likely behavior.

Appendix A.2. Direct Diagnosis Prompt Variations

For the direct diagnosis approach and prompt format ablation studies, we tested two
variations of the final assessment question:

Appendix A.2.1. Binary Format

Based on the video evidence, does this child show characteristics consistent with
autism?
• (0) No, the child’s behavior appears neurotypical
• (1) Yes, the child shows behavioral patterns consistent with autism

Appendix A.2.2. Three-Choice Format

Based on the observed behaviors, evaluate the likelihood of autism:
• (0) No evidence of autism
• (1) Some evidence of autism
• (2) Strong evidence of autism

Note: For the three-choice format, responses of (1) “Some evidence” and (2) “Strong evidence”
were both coded as positive for autism diagnosis in the binary classification task.
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