Review of Elliptic Curve Processor Architectures

Ibrahim Hazmi
PhD Candidate - University of Victoria
24 August 2015

Coauthors: Fan Zhou, Fayez Gebali, and Turki al-Somani
Outline

Introduction
- Motivation
- ECC Pyramid
- ECC Implementation

ECP Design Parameters
- ECC Processor
- Over view of ECP Design Parameters

ECP Architectures in the Literature
- Choice of Fields and Bases
- Choice of Algorithms and Coordinate Systems
- Parallelism, and Countermeasure against attacks
- Control option, and Hardware Platforms
- Key size, Operating Clock speed, and Area*Delay

Conclusion
Why ECC?

ECC

1. **Stronger Encryption**
 - Shorter key than RSA
 - 256-bit ECC = 3072-bit RSA
 - 10k times harder to crack than RSA 2048
 - Meets NIST recommendations

2. **Efficient Performance**
 - Handles more requests per second with lower CPU utilization
 - Uses less server power
 - ECC performance is expected to improve over time as the industry optimizes for ECC as it did for RSA

3. **Highly Scalable**
 - Large SSL deployments w/out additional hardware
 - Uses fewer resources with Lower costs

4. **Future of Crypto Tech**
 - Viable for many years
 - Built for Internet of things to come
 - Supports billions of new devices
 - Ideal for Open Networks

ECC: 10,000 times harder to break than RSA keys

“We believe in constantly furthering web security, which is why Chrome supports Elliptic Curve Digital Signature Algorithm (ECDSA) on all modern operating systems,”

Adam Langley, Software Engineer Google, 2013.

Source: Symantec Internal Research and Testing. Andrew Horbury, Symantec’s Algorithm Agility, March 2013
What is ECC?

- Public-key Cryptosystem based on the algebraic structure of elliptic curves over finite fields
- Based on the difficulty of the Discrete Logarithm Problem (DLP) over a group of points.
- ECC Pyramid
ECC Implementation

HW-SW Co-Design:
The Lower 3 Levels of the pyramid can be implemented in Hardware:
1. Finite Field Accelerator
2. Point Arithmetic Accelerator
3. Scalar Mul. Accelerator

ECC Processor
All ECC Layers can be implemented purely in SW or in the form of HW-SW Co-Design

Introduction

ECC Implementation

Upper Layer: The kP algorithm
- Representations of Scalar k (Binary, Ternary, NAF, Bit_Grouping)
 - The Binary Method
 - Addition Subtraction
 - Montgomery
 - Comb
 - Window

Middle Layer: Point Addition and Doubling & Coordinates Systems
- Affine Coordinates
- Projective Coordinates
 - Standard
 - Lopez-Dahad
 - Jacobians

Lower Layer: Finite Field Arithmetic
- Binary Field (GF_{2^m})
 - Multiplication Squaring
 - Addition Subtraction
 - Division Inversion
- Prime Field (GF_p)
 - Multiplication Squaring
 - Addition Subtraction
 - Division Inversion
ECC Implementation

Finite Field Arithmetic in Point Arithmetic

Field and Point Arithmetic in Scalar Mult. Algorithm

Example of a Scalar Multiplier Over Binary Field

Introduction

Lopez-Dahab Point Doubling Algorithm
ECC Processor (ECP) is a Cryptographic Hardware Processor that accelerates the intensive computations of ECC Scalar Multiplication.

MC: Main Controller
AUC: Arithmetic Unit Controller
AU: Arithmetic Unit
ECP Design Parameters

Design Parameters

- **A.** Choice of Fields and Bases
- **B.** Choice of Algorithms and Coordinate Systems
- **C.** Parallelism, and Countermeasure against attacks
- **D.** Control option, and Hardware Platforms
- **E.** Key size, Operating Clock speed, Area*Delay

The parameters were recorded in:

A table looks like:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field/Basis</td>
<td>Field Algorithms</td>
<td>Coordinate System</td>
<td>SM Algorithm</td>
<td>Parallelism</td>
</tr>
</tbody>
</table>
ECP Architectures in the Literature

Choice of Fields and Bases

Fields:
- Binary Field
- Prime Field
- Dual Field

Examples of Bases:
- Polynomial
- Normal GNB
- Optimal ONB
ECP Architectures in the Literature

Choice of Field Algorithms

Multipliers:
- Interleaved Multiplication
- Karatsuba Multiplication
- Sunar-Koc Multiplier
- Montgomery Modular Multiplication
- Cellular Automata Multiplier

Inversion:
- EEA-Based
- Almost Inverse
- Binary Euclid.
- Montgomery
- FLT-Based
- Itoh-Tsuji
ECP Architectures in the Literature

Choice of Coordinate System

<table>
<thead>
<tr>
<th>Coordinate System</th>
<th>General Addition</th>
<th>General Addition, Mixed Coordinates</th>
<th>Doubling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affine Coordinate</td>
<td>V+M</td>
<td>-</td>
<td>V+M</td>
</tr>
<tr>
<td>Standard Projective</td>
<td>13M</td>
<td>12M</td>
<td>7M</td>
</tr>
<tr>
<td>Jacobian Projective</td>
<td>14M</td>
<td>10M</td>
<td>5M</td>
</tr>
<tr>
<td>Lopez-Dahab Projective</td>
<td>14M</td>
<td>8M</td>
<td>4M</td>
</tr>
</tbody>
</table>

M = Multiplication
V = Division

- Affine and Projective Coordinates: 41.2%
- Affine Coordinates: 14.7%
- Projective Coordinates: 23.5%
- Lopez-Dahab Projective Coordinates: 20.6%
ECP Architectures in the Literature

Choice of SM Algorithm

<table>
<thead>
<tr>
<th>Unknown Point Multiplication</th>
<th>Fixed Point Multiplication</th>
<th>Multiple Point Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-to-Right and Right-to-Left Binary Methods</td>
<td>Fixed-Based Comb method (with 2 Tables)</td>
<td>Simultaneous MPM (Shamir’s trick)</td>
</tr>
<tr>
<td>Montgomery Point Multiplication</td>
<td>Fixed-Based Comb method</td>
<td>Joint Sparse Form (JSF)</td>
</tr>
<tr>
<td>Non-Adjacent Form (NAF)</td>
<td>Fixed-Based NAF Windowing</td>
<td>Interleaving with NAFs</td>
</tr>
<tr>
<td>Window and Sliding Window</td>
<td>Fixed-Based Windowing</td>
<td></td>
</tr>
</tbody>
</table>

Frequency Table

<table>
<thead>
<tr>
<th>SM Algorithm</th>
<th>Frequency</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montgomery Multiplication</td>
<td>22</td>
<td>52.38%</td>
</tr>
<tr>
<td>Left-to-Right Binary Method</td>
<td>8</td>
<td>19.05%</td>
</tr>
<tr>
<td>NAF</td>
<td>5</td>
<td>11.90%</td>
</tr>
<tr>
<td>JSF</td>
<td>2</td>
<td>4.76%</td>
</tr>
<tr>
<td>Slide Window Algorithm</td>
<td>1</td>
<td>2.38%</td>
</tr>
<tr>
<td>Interlaeving with NAF</td>
<td>1</td>
<td>2.38%</td>
</tr>
<tr>
<td>Double-Add Algorithm</td>
<td>3</td>
<td>7.14%</td>
</tr>
</tbody>
</table>
ECP Architectures in the Literature

Parallelism, and Countermeasure

- Parallel: 65.8%
- Not mentioned: 34.2%

Timing Attack: 43.5%
Power Analysis Attack: 17.4%
Power and Timing Attacks: 34.8%
Side Channel Attack: 34.8%
ECP Architectures in the Literature

Control option and HW Platforms

Controllers:
- Microprogrammed
- Finite State Machine (FSM)

HW Platforms:
- FPGA
- Xilinx
- Altera
- Others
- ASIC

Microprogrammed: 28.9%
FSM Controller: 71.1%
ASIC: 11.6%
FPGA: Xilinx: 23.3%
FPGA: Altera: 65.1%
ECP Architectures in the Literature

Key size, Clock speed, Area*Delay

<table>
<thead>
<tr>
<th>Key Size</th>
<th>Frequency</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>1</td>
<td>1.45%</td>
</tr>
<tr>
<td>83</td>
<td>1</td>
<td>1.45%</td>
</tr>
<tr>
<td>89</td>
<td>1</td>
<td>1.45%</td>
</tr>
<tr>
<td>113</td>
<td>4</td>
<td>5.80%</td>
</tr>
<tr>
<td>131</td>
<td>2</td>
<td>2.90%</td>
</tr>
<tr>
<td>160</td>
<td>2</td>
<td>2.90%</td>
</tr>
<tr>
<td>163</td>
<td>21</td>
<td>30.43%</td>
</tr>
<tr>
<td>167</td>
<td>1</td>
<td>1.45%</td>
</tr>
<tr>
<td>173</td>
<td>1</td>
<td>1.45%</td>
</tr>
<tr>
<td>191</td>
<td>1</td>
<td>1.45%</td>
</tr>
<tr>
<td>192</td>
<td>4</td>
<td>5.80%</td>
</tr>
<tr>
<td>193</td>
<td>3</td>
<td>4.35%</td>
</tr>
<tr>
<td>224</td>
<td>3</td>
<td>4.35%</td>
</tr>
<tr>
<td>233</td>
<td>7</td>
<td>10.14%</td>
</tr>
<tr>
<td>256</td>
<td>6</td>
<td>8.70%</td>
</tr>
<tr>
<td>283</td>
<td>2</td>
<td>2.90%</td>
</tr>
<tr>
<td>384</td>
<td>2</td>
<td>2.90%</td>
</tr>
<tr>
<td>409</td>
<td>1</td>
<td>1.45%</td>
</tr>
<tr>
<td>521</td>
<td>4</td>
<td>5.80%</td>
</tr>
<tr>
<td>571</td>
<td>2</td>
<td>2.90%</td>
</tr>
</tbody>
</table>

- The operating frequency varies significantly from 300 kHz to 2 GHz.
- The Area-Delay product varies from the minimum of (0.002 Slice*sec) to (112.1 Slice*sec).
Conclusion

- ECC has stronger encryption, more efficient performance, greater scalability over RSA
- ECC can be implemented purely in SW or in the form of HW-SW Co-Design
- Binary field with Polynomial representation is preferred.
- Interleaved multipliers and FLT Inverters are dominating the field arithmetic.
- Montgomery scalar multiplier is the most used algorithm, with the dominance of Lopez-dahab Projective Coordinate system.
- Parallelism and pipelining are more demanded for the desired efficiency.
Countermeasure against side-channel attacks is prioritized.

FSM is dominant preferred control approach

Xilinx FPGAs have the highest demand among the other hardware platforms

163-bit key size has the most appearance in the literature

The operating frequency varies significantly from 300 kHz to 2 GHz.

The Area-Delay product varies from the minimum of (0.002 Slice*sec) to (112.1 Slice*sec)
Thank you