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Ultimately, winds arise from uneven heating of the earth

I Solar radiation
I Typically absorbed first by land & water
I Transferred by various mechanisms back to air

I Energy absorption varies spatially & temporally
I E.g. Water, desert, forest, etc.

I Sets up temperature, density and pressure differences

I Leads to forces to re-establish equilibrium

I Hence the flows of air we call wind

I Typical coastal example

I Water is a moderator - relatively constant temperature
I During the day, land heats up, creating low pressure region
I Onshore breeze as air over water is relatively cool
I Overnight, land cools and wind stops, or may reverse
I Go to Nitinat lake to observe
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At the scale of an individual turbine, winds are greatly
affected greatly by local conditions

I Topology
I Top of a hill
I Sheltered valley

I Surface conditions
I Rough trees
I Smooth dessert
I Lakes and oceans

I Built-up areas
I Urban areas (Carpman 2011)
I Individual houses, barns, etc.
I Other turbines!
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Wind power density is a cubic function of wind speed

Pdensity = 1
2ρV

3

Pturbine = 1
2ρV

3CPA

I CP ranges from 0.1 to 0.59

I Betz limit 16
27

I Capture area A growing with diameter D2
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Standard wind speed measurement tools: NRG and RM
Young are the most common

Wind vane, cup anemometer

Windmill anemometer

Sonic anemometers and temperature
sensor
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LiDAR is playing an increasingly large role

9 / 123



Wind speeds vary on a number of time scales
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Weibull probability density function f (U) describes annual
hourly average wind speeds
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Wind roses are used to display directional wind information

I Binning of azimuthal direction measurements

I Length indicates relative probability

I Example for CIMTAN site in Kyuquot
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Wind turbines typically operate in the boundary layer

I 200 – 500 m boundary layer height

I Boundary layer influenced by:

I Strength of the geostrophic wind
I Surface roughness
I Coriolis effects
I Thermal effects
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Boundary layer profiles vary greatly over time with
prevailing conditions

WRF simulations for Pritzwalk
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Wind turbines always operate in an unsteady environment
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The power in the wind has been used for thousands of
years, first for transportation
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Wind has been used since first century AD to directly do
mechanical work

I Pumping water (irrigation and drainage)

I Grinding grain

Persian Windmill
Source: http://en.wikipedia.org/wiki/File:Perzsa malom.svg 19 / 123
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A little wind turbine taxonomy

I HAWT: horizontal axis wind
turbine

I VAWT: vertical axis wind
turbine (cross-flow, etc.)

20 / 123



Up to 200,000 windmills in Europe at their peak, and were
already adaptive structures

Danish windmill
Source: http://en.wikipedia.org/wiki/File:

DK Fanoe Windmill01.JPG

Greek windmill
Source: http://en.wikipedia.org/wiki/File:

Windmill Antimahia Kos.jpg 21 / 123
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The farm windmill is an iconic image

I Note large number of blades

I Self-furling tail
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Charles Brush in the US, 1880/1890s

I 56 foot diameter & 144 wood blades
I Lasted 20 years
I 12 kW peak power
I Recharged 408 batteries to illuminate 350 incandescent lamps,

three electric motors and two arc lights
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Wind turbine (Jacobs) used in North America before
transmission lines reached rural areas

I 30,000 units installed

I Passive control
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The oil crises of the 1970’s were the impetus for modern
wind turbines

I The Danish industry grew
out of the farming industry

I Started small, and
incrementally built

I Locally owned-operated
machines - social license

I Government
subsidies/support as no
domestic fossil resources
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Vestas is an example of a Danish manufacturer that
originally made farming equipment
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The US hired aerospace engineers and large companies,
and didn’t succeed

I NASA, Westinghouse, GE, Boeing, United Technologies
I Go big or go home didn’t work
I US’s current turbines (e.g. GE) are essentially Danish imports
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Mod-1 turbine in action - note downwind orientation
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Canada unfortunately backed the wrong (4 MW) horse
I Again, go big or go home didn’t work
I VAWTs didn’t win out

I Cyclic loading, complex aerodynamics
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And so, we have the modern 3-bladed, upwind
“Danish-concept” machines you see around today
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“Danish-concept” turbines continue to grow in size

Source:
https://www.cleanenergywire.org/factsheets/german-onshore-wind-power-output-business-and-perspectives
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Same size evolution seen in the US

Source: https://www.vox.com/energy-and-environment/2018/3/8/17084158/wind-turbine-power-energy-blades
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Manufactures typically offer a range of rotor sizes suited
for different conditions

I Vestas 4 MW nominal rating line
I Common nacelle, various tower heights
I Range of wind speeds
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Wind energy is extracted through a step change in static
pressure, which affects velocities around the rotor
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The actuator disc model is the most basic model of an
energy-extracting disc

I Rotor doing work on the flow: P = TUD

I Basis of many analysis approaches (BEM, CFD, porous disc
experiments)
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BEM theory is based on the assumption of independent
radial streamtubes (annuli)

I Blades exert pressure forces on flow due to local aerodynamic
loading
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There are various ways to understand the lift generated on
an airfoil

I Local velocities determine pressures around the airfoil creating
lift

I Sheared flow (and separation) create drag
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The flow around a wind turbine rotor is complex and
fundamentally governs the power capture and loads

(http://i.imgur.com/qruVcnu.jpg)
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Wake simulations are key for individual machines and
arrays

41 / 123



Vertical axis turbine wakes are even more challenging to
simulate

(http://www.gauss-centre.eu/gauss-centre/EN/Projects/EnvironmentEnergy/chatelain˙VAWT.html?nn=1345670)
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Experiments remain challenging even for steady-state,
given scales and accuracy requirements involved

IEA Task 29 Mexico rotor experiment
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Our trailer-based test rig for towed & parked testing
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Various ideas are used and tried to improve aerodynamic
performance

Vortex generators

Serrated trailed edges

Turbuncles
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Modern machines operate in variable speed mode and
pitch control modes

I Region I pitch used to assist in start-up
I Region II pitch constant and speed varied
I Region III speed constant and pitch varied to maintain rated

power
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Instantaneous power always fluctuating
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Large quantities of reinforcing steel to transfer in loads
from tower to base
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Foundation bolts ready for tower installation
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Various types of towers used, but the uniformly tapered
tubular tower is the standard

I Guyed and lattice/multi-element towers structurally efficiency

I But aesthetics plays a key role
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Towers are frequently manufactured locally in 3–4 sections
and bolted together on-site
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Doubly-fed induction generators with gearboxes have been
the emergent norm for drivetrains
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Enercon has used exclusively electrically excited
direct-drive generators for decades - heavy nacelles!
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Siemens (formerly Bonus) Gamesa has a direct drive
permanent magnet machine
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Wind turbine blades are massive composite structures

(https://www.themanufacturer.com/articles/fishing-fibreglass-hull-embraces-blade-production/)
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Blades are made up of composite layups
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We can simulate composite wind turbine structures
accounting for material variability

I Bayesian approach accounting for natural property variation
and model deficiencies
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The fundamental square-cube law continues to be ‘broken’

Capture area ∝ D2

Mass ∝ D3

I LM 107.0 P blade (2019) - 220 m dia, 55 t mass
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LM 107.0 P blade
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Reducing blade weight as machines grow is a chief concern

I Reduce aerodynamic loads
I Reduce gravity bending moments

I Further reduce structural requirements

GE fabric blade concept (canceled in 2014)
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Transportation becomes a challenge!

I Localized manufacturing
I Offshore advantages
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Canadian distribution of wind resource at 50 m
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Global average windspeeds at 50m height - Class IV 7m/s+

(http://visibleearth.nasa.gov/view.php?id=56893)
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The fact that the wind resource is globally distributed is a
key attraction and motivator to harness it

I Very large potential resource

I Potential for GHG reductions in most economies
I Avoidance of conflict

I Fuel source not a geopolitical commodity
I Proliferation proof

I Relatively labour intensive
I Jobs sell energy ideas (look at marketing for oilsands,

pipelines, etc)
I Wind prospecting & siting
I Localized manufacturing of large components
I Civil works
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The fact that the wind resource is distributed is also a
challenge

I Low energy (power) density compared to fossil & nuclear

Pdensity = 1
2ρV

3

I Transmission to load centres
I Local impacts

I Nearby residents vs. landowners
I Visual (aesthetics & flicker)
I Acoustic
I Wildlife

I Variable

I Intermittent?
I Capacity factor impact on design & economics
I Implications for integration – a whole other talk!
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Global installed renewable generation continues to grow
with wind making a large contribution after hydro

Stack: Hydro, wind, solar, biomass
Source: https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-Series
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Although still a relatively small contributor overall, wind is
growing as a % of global electricity energy mix

Source: https://www.nrel.gov/docs/fy18osti/70231.pdf
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Electricity generation (capacity) type highly regional

Source: https://www.cer-rec.gc.ca/nrg/ntgrtd/ftr/2019/index-eng.html
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National Energy Board electricity generation (TWh)
forecast

Source: https://www.cer-rec.gc.ca/nrg/ntgrtd/ftr/2019/index-eng.html 73 / 123
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Installed wind capacity in Canada

Source: https://canwea.ca/wind-energy/installed-capacity/
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Globally, wind power continues to expand through new
build and re-powering

Source: http://www.gwec.net 75 / 123
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Future growth to continue

Source: http://www.gwec.net

I Recent auction results, subsidy-free (2020-2022 delivery)
I e0.025/kWh (Alberta)
I e0.015/kWh (Mexico)
I Wholesale elec price for 700 MW Hollandse Kust (Netherlands)
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China has like in many other areas dominated the picture

Source: http://www.gwec.net
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Turbines typically have a 20 yr design life and machine size
growth is rapid

(https://www.desertsun.com/story/tech/science/energy/2018/10/24/palm-springs-iconic-wind-farms-could-change-dramatically/1578515002/)

I Repowering with fewer, larger machines
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Disposal/recycling is becoming an issue

Wyoming landfill example (2019)
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Playgrounds aren’t going to cut it...
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Pyrolysis current option

(http://www.renewableenergyfocus.com/view/319/recycling-wind/)
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Regardless, the GHG LCA of wind is very good

(Moomaw et al. 2011)
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(Hertwich et al. 2015) 84 / 123
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Many projects have been developed over last 15 years
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Some growing pains, but now mature

I London Array (2013): 630 MW, 175x Siemens 3.6-120

I 370 MW Phase 2 abandoned in 2014
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Optimal support structure is dictated by water depth and
bottom geotechnics
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Offshore transformer stations

Lillgrund

Nysted
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Installation has lead to specialized equipment
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Servicing has also spawned a specialized industry

91 / 123



Offshore Wind Energy
EU Genesis
Offshore Resource & Development
Floating Offshore

92 / 123



Canada, and BC in particular, has a large offshore wind
resource
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BC’s coastal remoteness and bathymetry motives the
investigation of floating offshore wind

94 / 123



Offshore turbines shift the proportion of costs to Balance
of Station (BOS) and increases total costs

Offshore reference turbine CAPEX breakdown ($5,600/kW)1

I 2018: e2.45M/MW = $3,700/kW CND

I Site C: $10.7B/1100 MW = $9,727/kW *(55% capacity
factor vs. wind rated power metric)

1Tegen et al. 2012.
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Continued drive towards larger machines

Nov 2019 commissioning
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Costs continue to fall over time with larger machines and
more deployments

(http://euanmearns.com/a-review-of-recent-solar-wind-auction-prices/)
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Recent data on offshore wind auctions

I Site C estimates: 0.02–0.07 USD/kWh
I 2018 German offshore wind auction average: 0.053 USD/kWh
I 2020 Shell/EDP Massachusetts Mayflower project:

0.058 USD/kWh
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Floating offshore in first (array) project stages

I Tension-leg, spar buoy (ballast), and buoyancy stabilized
platform concepts
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Developers have proposed a wide range of floating
platforms and in some cases tailored turbines

(a) Hywind
2.3 MW
(2009)

(b) Windfloat V80
2 MW
(2011)

(c) Sway 7 kW
(2011); bankrupt

2014
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Equinor (Statoil) Hywind Scotland (2017)

I 30 MW: 5x Siemens 6.0-154 turbines

I 65% capacity factor demonstrated

I 95–120 m water depth (potential to 800 m depth)
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Equinor (Statoil) Hywind Tampen (2022)

I 88 MW: 11x Siemens Gamesa Renewable Energy (SGRE)
8.0-167 DD turbines = 35% of platform power demand

I Concrete (vs steel) spars

I 250–300 m water depth

103 / 123



Principle Power WindFloat Atlantic (2020)

I 25 MW: 3x Vestas V164-9.0 MW turbines in 100 m water
depth

I Grid-connected to Portugal
I Plans for 30 turbines, 150 MW total
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There is a wide design space for offshore floating platforms
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The design of offshore turbines themselves have some
shifted constraints leading to different ideas

I Very large (> 10 MW) machines become self-induced fatigue
dominated

I Relaxed TSR limits may lead to 2-bladed HAWTs, or at least
lower loads in 3-bladed machines

I VAWTs place the generator lower down
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How crazy the idea of airborne wind sounds depends on
what you’re talking about

I There are a range of universities, companies and conferences
on this topic!

I High-altitude vs. more realistic lower altitudes (< 1000 m)
I High altitude jet stream looks good on paper
I Airspace restrictions

I Drastically reduced structure for a very big capture area

Source: http://www.makanipower.com
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Many concepts are being proposed

Sources: http://www.makanipower.com,http://www.kitepower.eu
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Pumping or drag modes the most common and powerful
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Control 24x7, 365

SSDL lab AWES system
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Continuity of power output for pumping-mode

KPS (exited 2019)
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Pumping mode takeoff & landing strategies

Ampyx
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Unique strategies are possible

Enerkite 115 / 123



Removing tether drag is advantageous

Rachel Leuthold et al

116 / 123



Offshore and MW scale just makes things harder!

Makani/GoogleX/Alphbet/Shell (exited this week!)
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Weight is key, but so is aero, cost, control, scaling...

100m2 Kitepower prototype
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Offgrid diesel replacement
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Wind has driven ship transport for thousands of years, and
is returning

I Flettner rotors exploit
Magnus effect

I Enercon’s transport ship -
30–40% fuel savings

Source:
http://en.wikipedia.org/wiki/File:E-Ship 1 achtern.JPG

I Leverage modern
technologies - 10–30% fuel
savings
I Kiteboarding
I Non-linear control

Source: www.skysails.info 121 / 123
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Thanks for listening!

Dr. Curran Crawford

E-mail curranc@uvic.ca
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