"The theory and practice of getting fitter and stronger"

David Docherty, PhD, Professor Emeritus School of Exercise Science, Physical and Health Education University of Victoria

Four part series

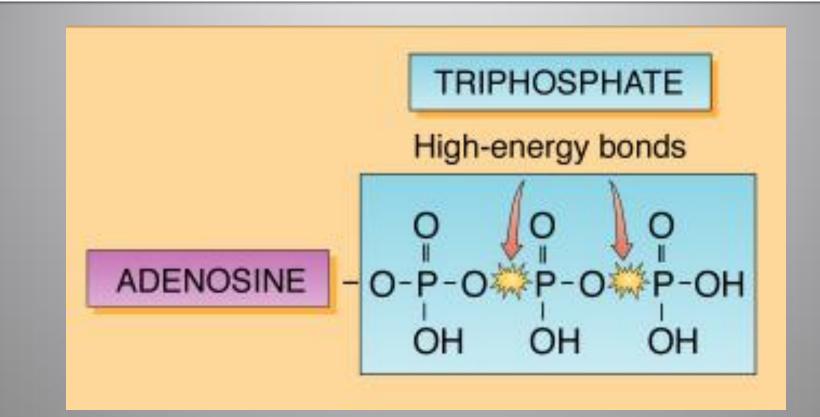
- 1. Developing aerobic (cardiovascular) fitness (March 3rd)
- Developing strength and muscular endurance (March 10th)
- Developing the core or back stability (March 17th)
- Effective warm up and developing flexibility (March 24th)

- All the presentations are accessible at:
- https://onlineacademiccommunity.uvic.ca/eld eracademy/

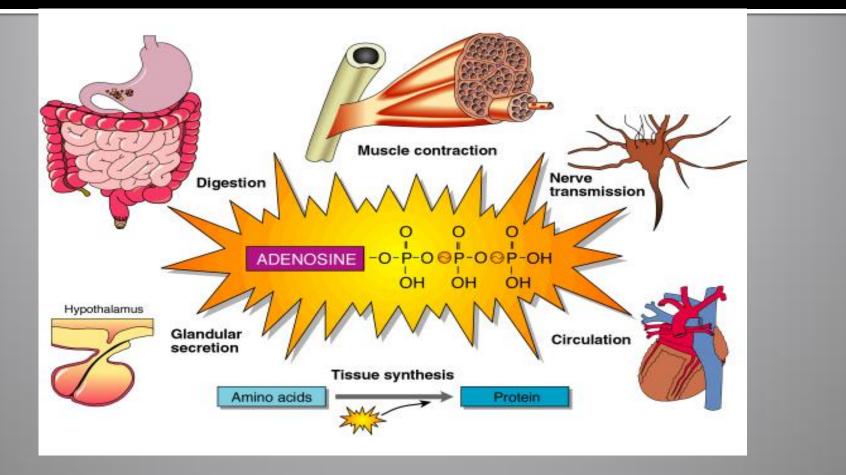
Four part series

- Developing aerobic (cardiovascular) fitness (March 3rd)
- Developing strength and muscular endurance (March 10th)
- Developing the core or back stability (March 17th)
- Effective warm up and developing flexibility (March 24th)

Developing the Energy Systems


David Docherty

With special thanks to Ben Sporer, Howie Wenger, and Lynneth Stuart-Hill.


What is Energy?

Capacity for doing work

ATP – Human Energy

Why do we need ATP?

So.....when **ATP** is used to do cellular work

the products are ADP + Pi which must be re-converted to ATP if work is to be continued.

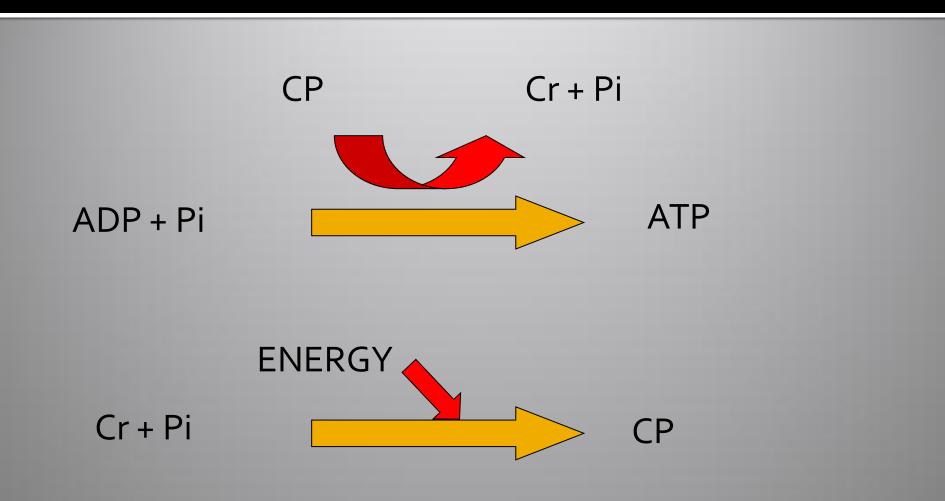
> These conversions are called **PHOSPHORYLATIONS**

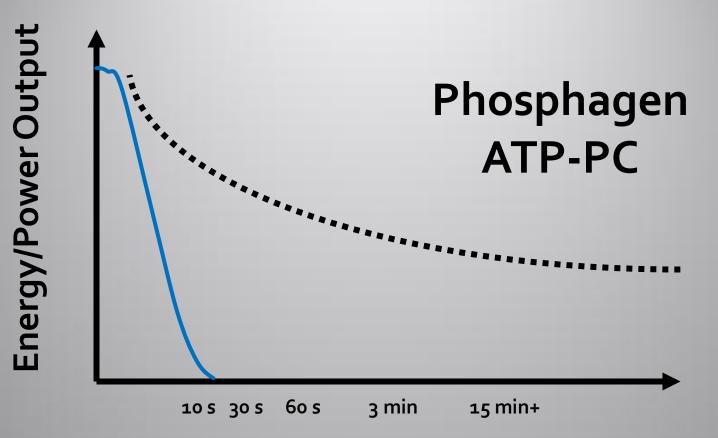
Energy Systems

- Regeneration of ATP is what the energy systems are all about
- There are 3 energy systems to regenerate ATP:
 - ATP-CP system (Alactic system)
 - Anaerobic glycolysis (Lactic system)
 - Aerobic system

Energy Systems

ALL ATP used for movement is regenerated from one of these systems
all movement can be classified into one or a combination of these systems


The three energy systems differ in the rate and amount of ATP that can be resynthesized referred to as:


POWER = the <u>rate</u> at which ATP can be produced **CAPACITY** = the <u>total</u> amount of ATP that can be produced

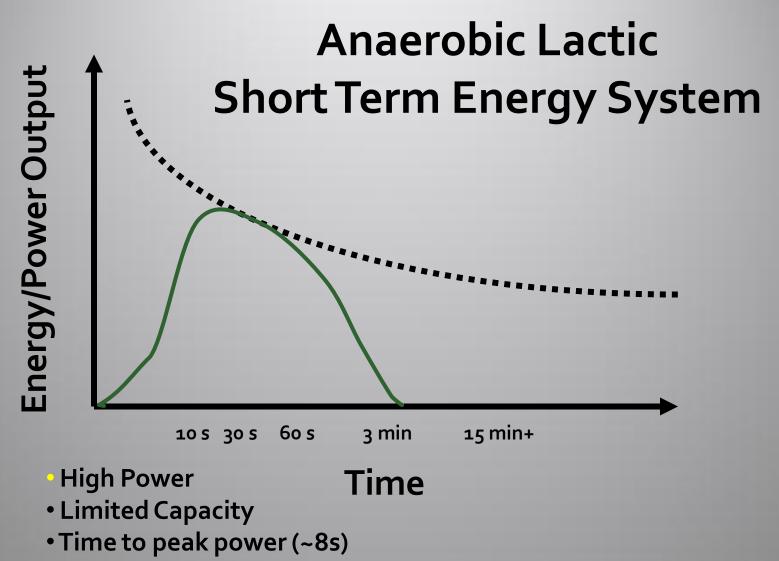
ATP – CP System

- muscles store some ATP for immediate use
- muscles also store creatine phosphate, CP
 - sometimes called phosphocreatine, PCr
- CP is a "high-energy phosphate" that can be used to quickly regenerate ATP from ADP and Pi
- this system is important in high energy, short duration events
- the amount of [CP] in the cell is 4-6X greater than [ATP]

ATP – CP System

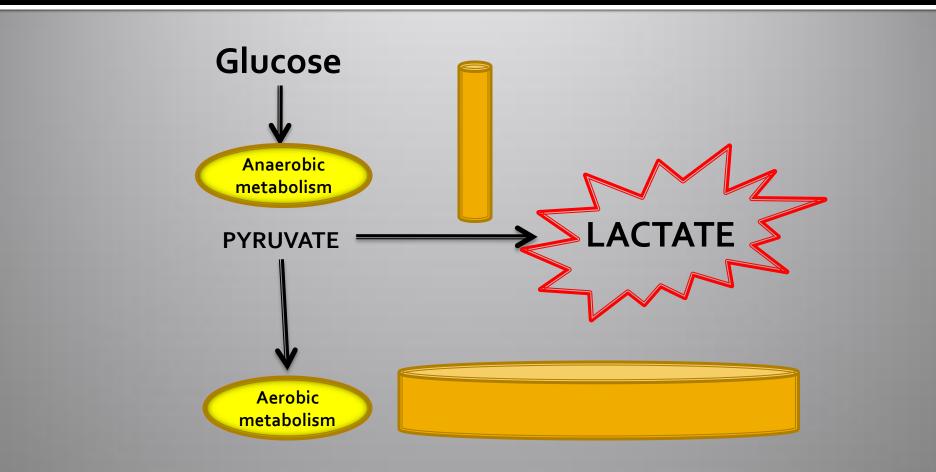
Time

- Very high power
- Very low capacity
- Time to peak power (ms)
- Peak power & capacity (~7 10s?)


Anaerobic Lactic System (Anaerobic glycolysis)

2 challenges for this system:

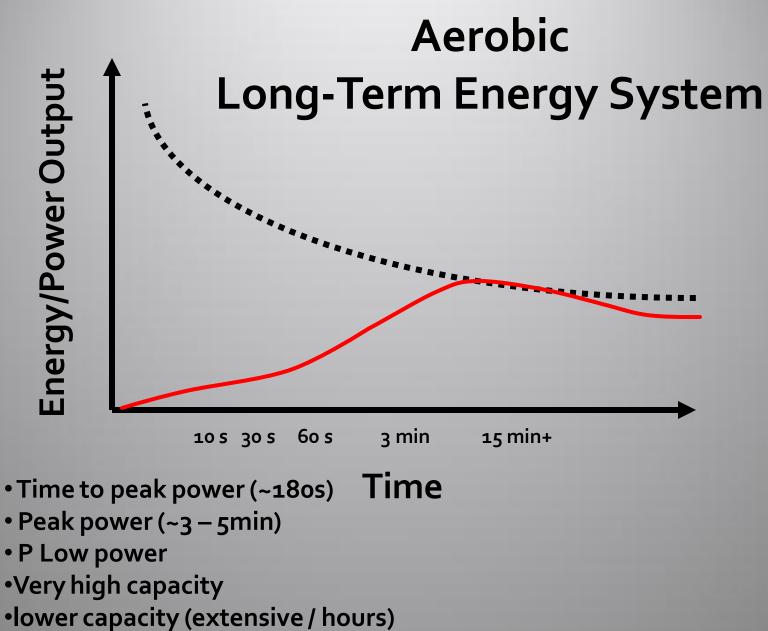
- very inefficient (2 molecules of ATP / glucose used)
- 2 produces lactic acid as a by-product that reduces ability to perform work (burning feeling in muscles)
- Requires 12 steps to create ATP (therefore slower than ATP-CP system but creates more ATP)


this system *only uses carbohydrate* as fuel Where does the carbohydrate come from?

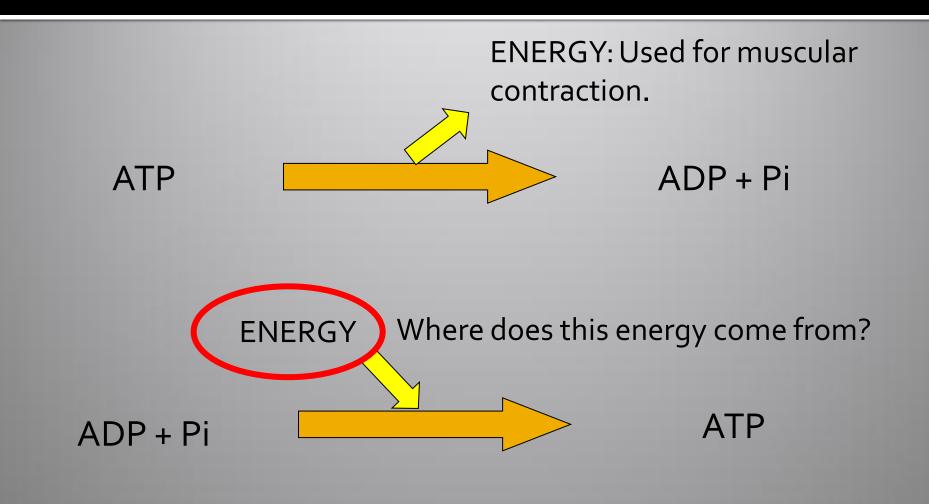
muscle glycogen, blood glucose, liver glycogen.

- Peak power (~40 70s)
- Power capacity (~90 120s)

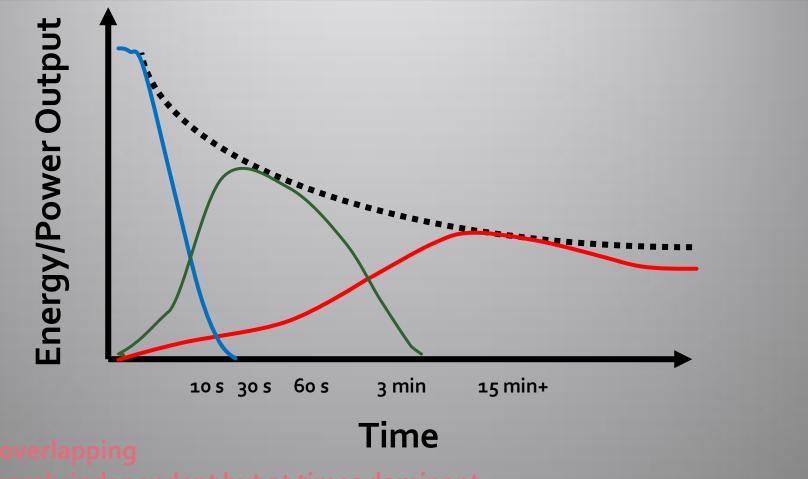
Anaerobic -> Aerobic???


Aerobic System

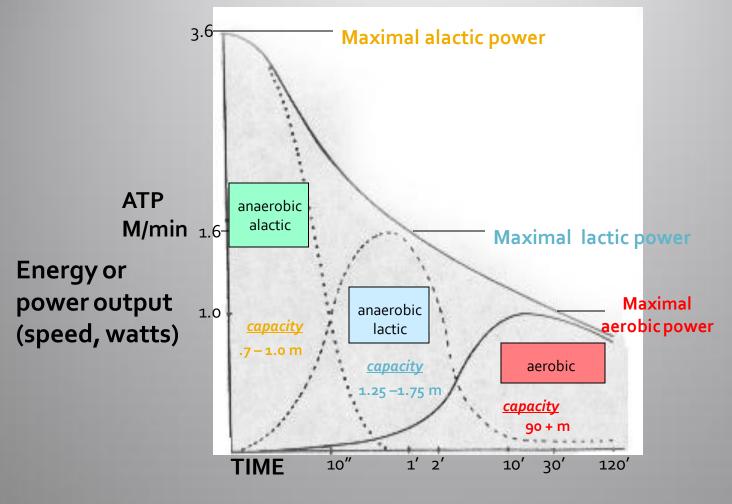
- after 1 2 min exercise, the anaerobic systems cannot "keep up" with the energy demands of the muscles → need a more efficient system
 when oxygen is freely available to the muscle
 - cells:
 - all food types (fat, carbohydrate, proteins) can be oxidized to carbon dioxide and water to produce energy
 - this process produces 36 molecules of ATP / glucose molecule
 - waste products are CO_2 and H_2O .


Aerobic System

BUT: What is the problem?


- problem is the delay in getting oxygen to the muscle cells (otherwise the aerobic system could be used right from the start of exercise). It takes about 30 chemical reactions to produce the ATP.
- SO: you can see the link between cardiovascular fitness & aerobic fitness:
 - need to move large amounts of oxygen to the muscle cells quickly: requires a strong aerobic (CV) system

Bioenergetics Simplified

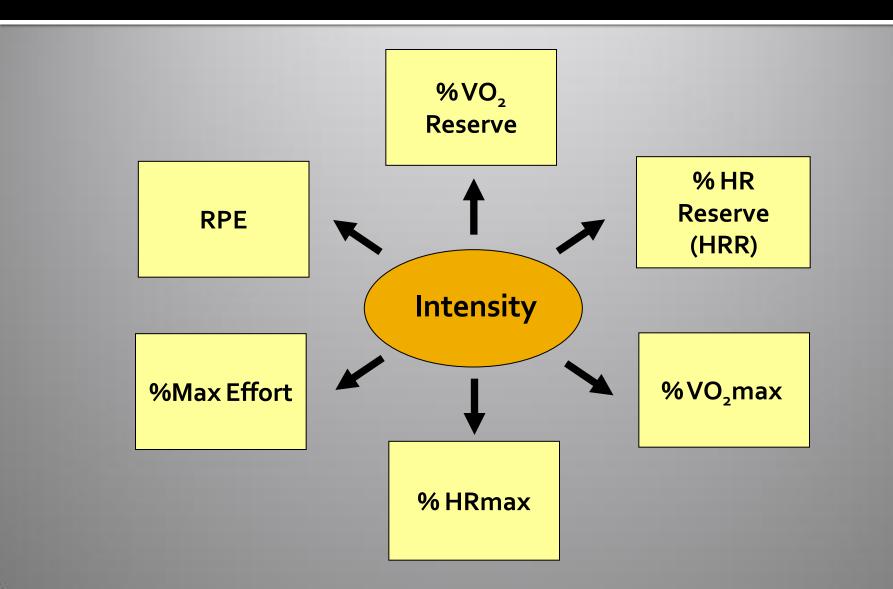


Energy System Continuum

rarely independent but at times dominant

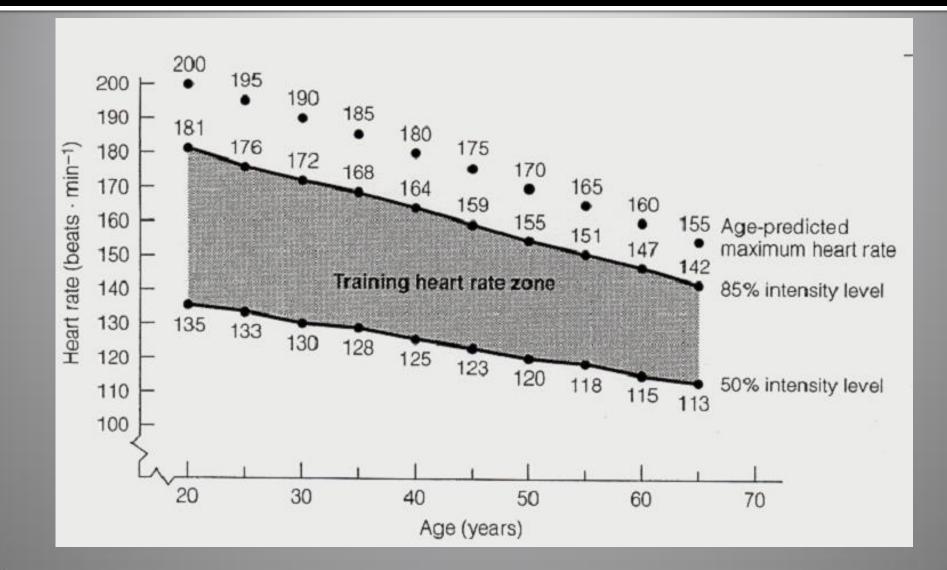
THE ENERGY SUPPLY CONTINUUM

Adapted from Howald et al. 1978


Training the energy systems

Specificity of Training

For design of training session, consider...


- the energy system utilized
- the type or mode of activity
- muscle recruitment pattern
- work:rest/recovery ratios
- range of motion
- etc.

Measuring Exercise Intensity

Fifteen-Category RPE Scale			Category-Ratio RPE Scale
_ight Ir	ntensity		
6	No exertion at all	0	Nothing at all
7	Extremely light	0.5	Very, very weak (just noticeable)
8			
9	Very light	1	Very weak
10		2	Weak (light)
11	Light	3	Moderate
Modera	ate Intensity		
12		4	Somewhat strong
13	Somewhat hard	5	Strong (heavy)
14		6	
Vigoro	us Intensity		
15	Hard (heavy)	7	Very strong
16		8	
17	Very hard	9	
18		10	Very, very strong (almost max)
19	Extremely hard		
20	Maximal exertion	•	Maximal

HR Training Zones

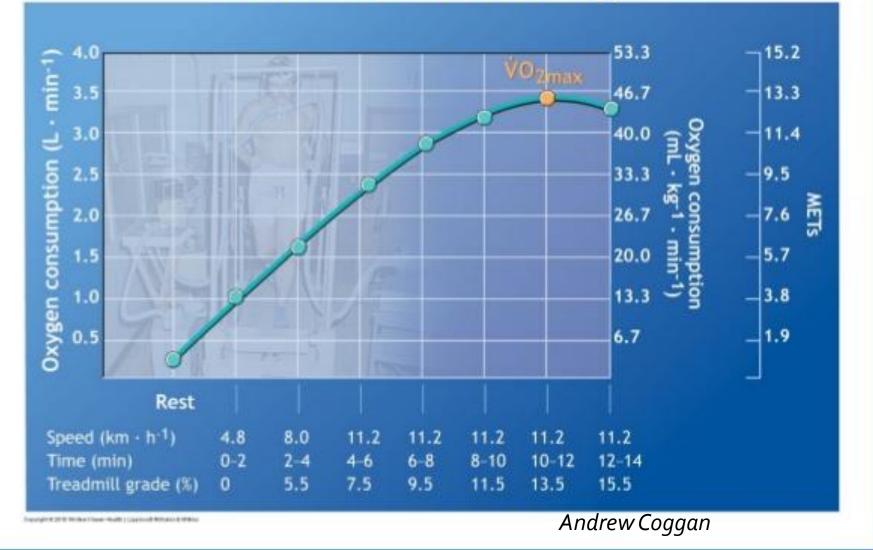
Remember.....

The energy sources for a given activity are time- and intensity-dependent
Must do *progressive overload* by altering intensity, frequency and duration

When *progressively overloading* the energy systems you can:

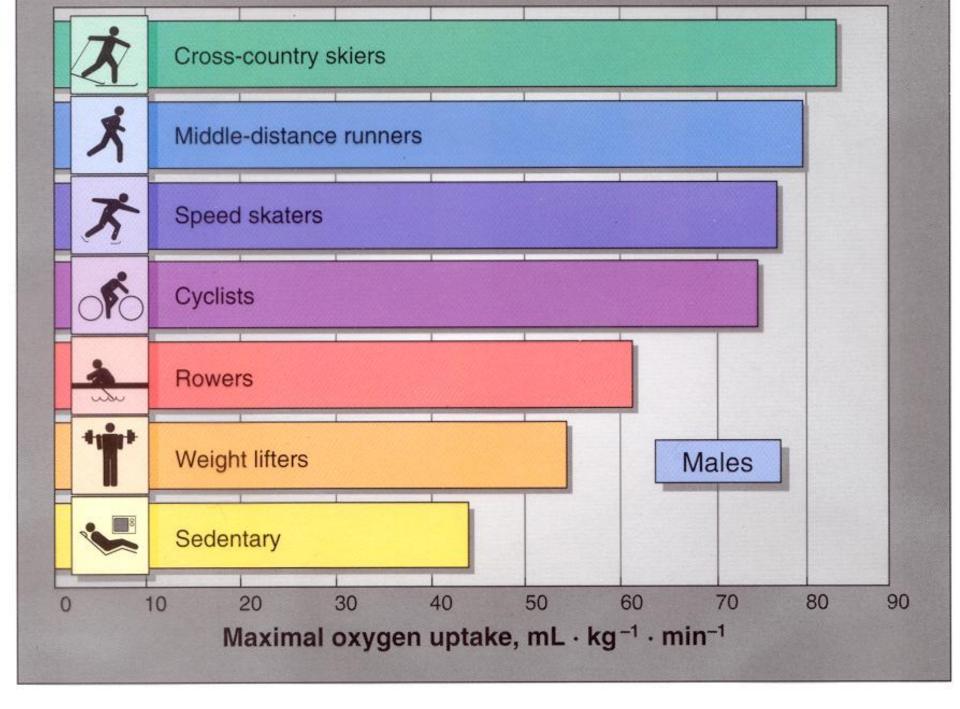
- Increase the intensity of effort within the energy system
- Increase the training volume (length of time for intervals, number of reps, and the number of sets per session)
- Decrease the recovery time between reps and/or sets
- Increase/decrease the training frequency (sessions per week)

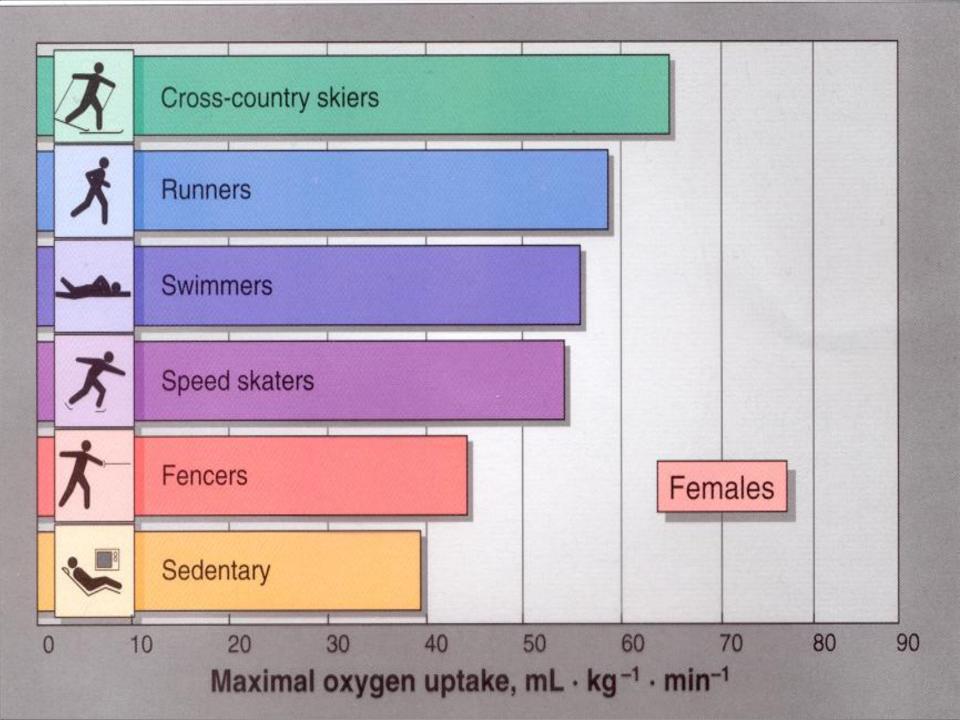
Remember.....


As we keep training (or competing/ performing) the energy system that is dominant may change, especially if recovery intervals are not long enough (reflected by a drop off in intensity/power output, or effort) Alactic --> Lactic

Aerobic Power

Maximal aerobic power:


- maximal rate at which oxygen can be taken in, transported and utilized by the body
- key aspect; power term...rate...unit time
 expressed as ml.kg⁻¹.min⁻¹ or L.min⁻¹


Plateau in VO₂ with increasing exercise intensity

VO2 max test for aerobic power

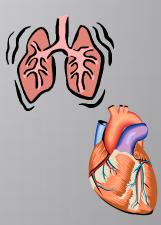
https://www.youtube.com/watch?v=fn3Yr-LS_lo

World Records

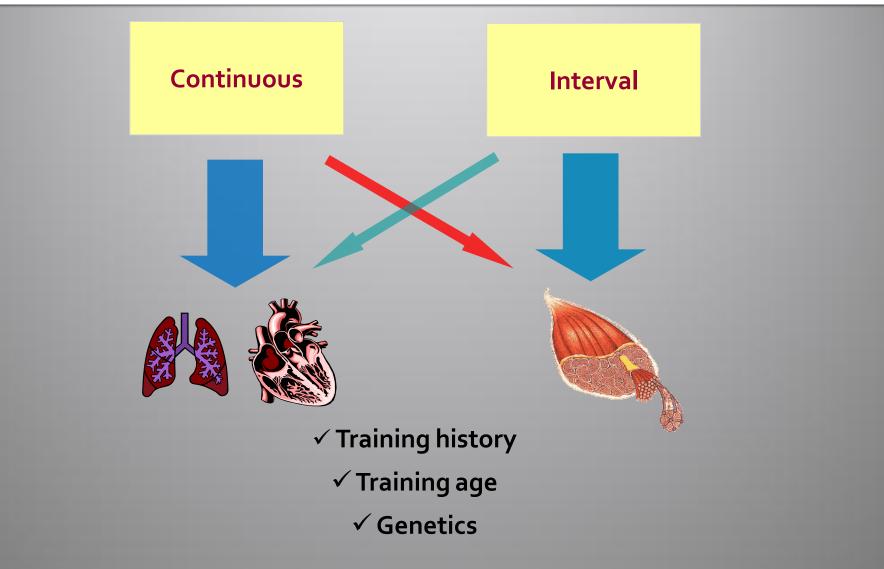
- Men 96 ml kg-1
- Norwegian Cross Country Skiier
- Women 78.6 ml kg-1
- 1984 Olympic
 Marathon Champion

WHO'S AWESOME?

K.L Harrison

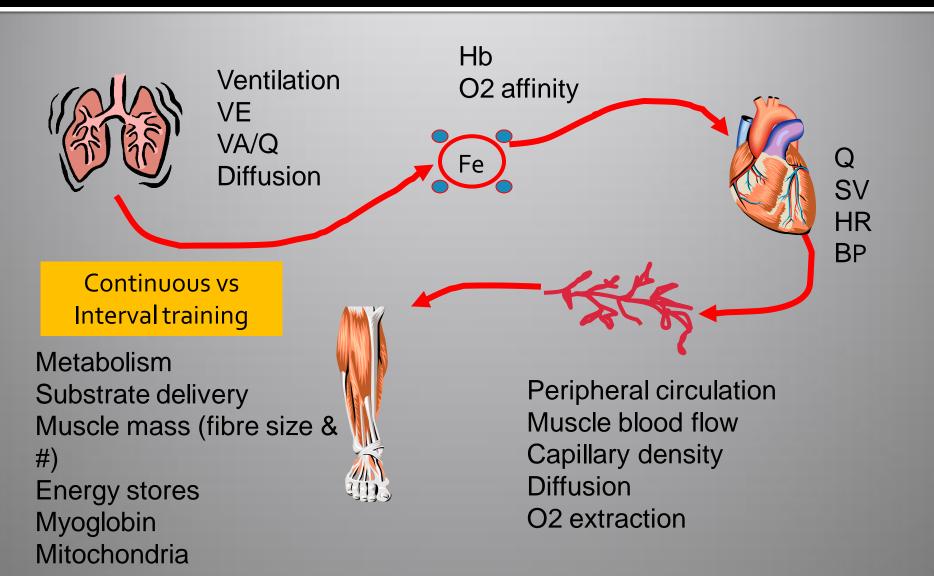

Aerobic Power

Central


 oxygen delivery depends upon maximal cardiac output (CO) and maximal arterial oxygen content

Peripheral

 'peripheral' extraction of the delivered oxygen traditionally expressed as...(a-v) O₂ difference)


Training to Enhance Aerobic Energy System

Aerobic Power

$VO_2 = CO x (a-v)O_2$ difference

Factors affecting aerobic power

Training to Enhance Aerobic Energy System

Continuous

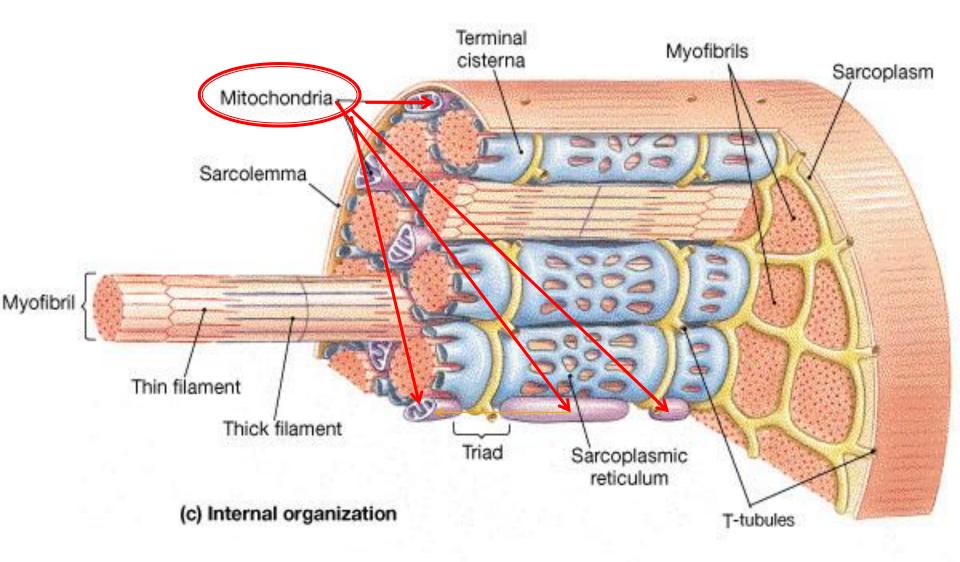
 ✓ Maximize load on heart and lungs

✓ Extend duration > 30 min

✓ Sub-Threshold

 ✓ Maximize blood changes

 ✓ Increase utilization of fat


✓ Maximize load on metabolic machinery ✓ Maximize buffering capacity ✓ Above threshold

Interval

 ✓ Optimum time is 3 min at VO₂max?

✓ Total work > ? min

Myofibril packaging (internal organization)

- https://www.youtube.com/watch?v=dWe8vtz tW-4
- https://www.youtube.com/watch?v=NN5Y57 NbnrU
- https://www.youtube.com/watch?v=8Y_Fdjl2 v4l

Sample Aerobic Training Zones

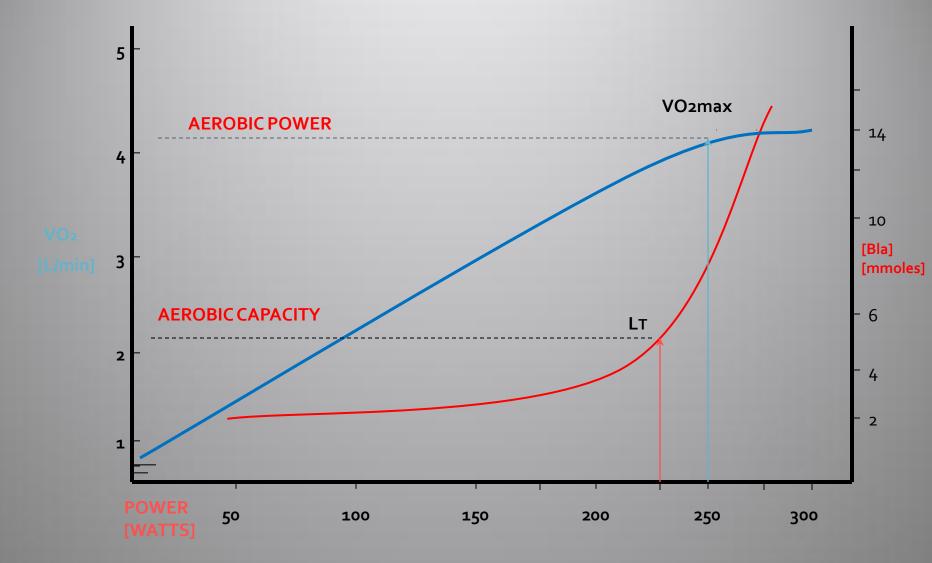
Zone 1	This zone is primarily used for recovery. It places very little stress on your body and helps clear waste products from the muscle	
Zone 2	This zone is well below your anaerobic threshold and is used to build aerobic capacity. Can also be used for recovery during high intensity training	
Zone 3	This zone is considered sub-threshold and is at or just below your race pace. You should not be able to hold this intensity for > 45 min.	
Zone 4	This zone is slightly higher than your time trial pace and places heavy stress on the aerobic system as it an intensity that results in accumulation of lactate.	
Zone 5	This zone is at an intensity that directly targets your maximal aerobic power and you should not be able to maintain this intensity for > 5 min. Use this intensity for intervals lasting 2-5 minutes	

Aerobic Continuous Training

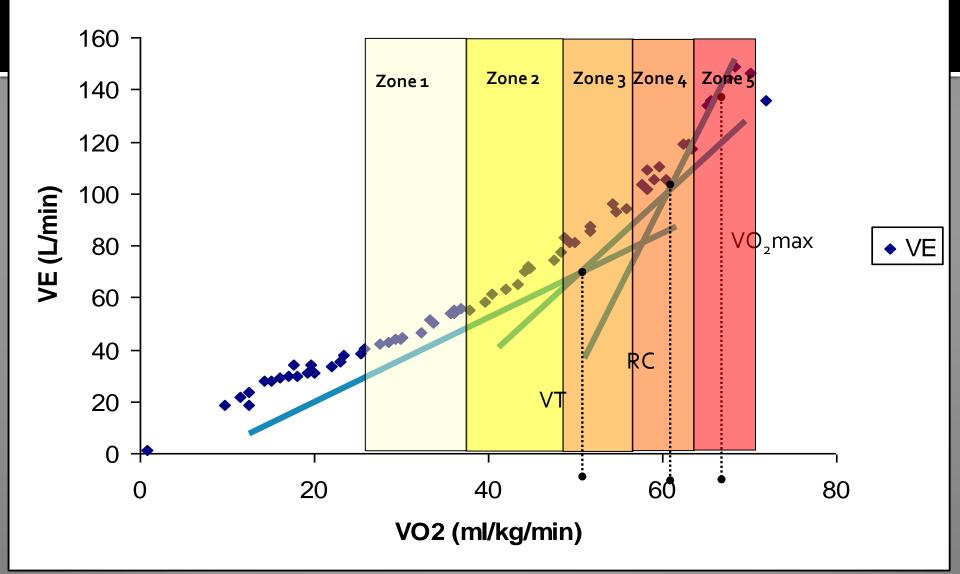
Work phase	10 - 45 min	
Rest phase	n/a	
Work : rest ratio	n/a	
Intensity (% max effort)	<70%	
Repetitions (number)	Continuous	
Sets (number)	n/a	
Rest between sets	n/a	

Guidelines: engage in 1. Continuous Physical Activity

- 30 min of moderate physical activity per day for 5-6 days per week
- 20 min of vigorous physical activity 3 days per week
- 10 min of moderate physical activity 3 times per day for 5-6 days per week
 - 10,000 steps a day
- Continuous physical activity (training)



Aerobic (VO2max) Interval Training


Work phase	3-10 min	
Rest phase	3-10 min (active)	
Work : rest ratio	1:1	
Intensity (% max effort)	90 – 95% of max HR – 95 – 105% of VO2max pace	
Repetitions (number)	Accumulate 12 – 25 min	
Sets (number)	1-10	
Rest between sets	10-15 min (active)	

• Discussion - Group Management

DETERMINING AEROBIC POWER AND CAPACITY IN RELATION TO VO₂ AND BLa

VE vs. VO2

2. Aerobic interval training

Interval training involves a period of high intensity effort (30s-3min) followed by and equal or greater time of active rest (30s-3min) repeated 5-10 times Suggested it targets the oxidative mechanisms in muscle by making the muscle hypoxic (increases oxidative enzymes and number of mitochondria). Also considered to offset some of the effects of aging (from Cell Metabolism, 2017)

Astrand ,Rodahl, Dahl, & Stromme, 2003, Bell & Wenger, 1986. Gaiga & Docherty, 1995. Rhodas et al., 2000, MacDougall et al., 1998.

Original aerobic interval training guidelines.

- 1:1 work to recovery ratios
 - 1-3 min work intervals
- Active recovery (60% VO2 max)
- Number of work intervals (6-10)
- Optimal 30-35 min at or close to VO2 max.

Astrand ,Rodahl, Dahl, & Stromme, 2003, Bell and Wenger, 1986

More recent approaches (high intensity interval training:HIIT)

What is HITT?

 High intensity efforts with short recovery periods

10 maximum efforts of 60s work with 60s active recovery (total time=20 min)

4-6 maximum efforts of 30s work with 4 min active recovery (total time=20-27 min)

*8 maximum efforts of 20s work with 10s active recovery (total time=4 min!)

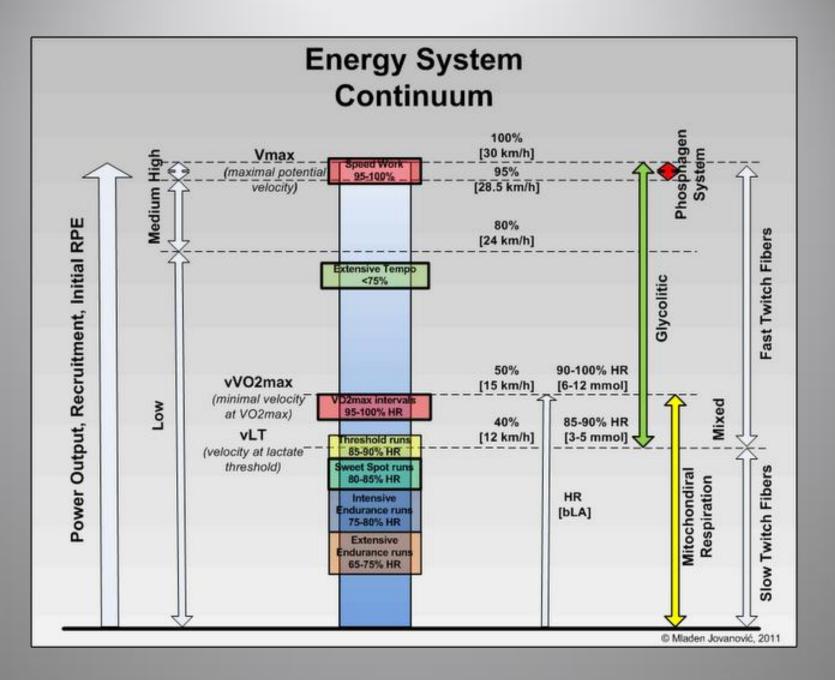
3 maximum efforts of 20s work with 2 min active recovery (total time=2 min!)

McMaster Group, *Tabata group.

Tabata Intervals

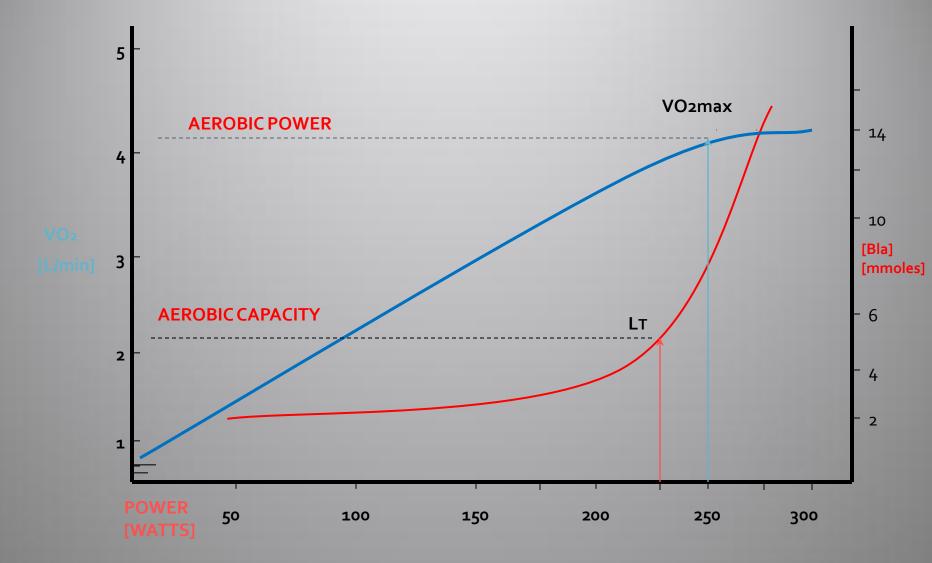
- 20 sec full out effort
 10 sec active rest
 Repeat 8 times
 Total training time = 4 min
- Found to produce 7 mL (11%) increase in VO2 max (52-59 mL) and 28% in anaerobic performance!!

Tabata et al., 1996


Used with many different populations including those with CHD and other chronic conditions (diabetes, obesity)
Produces equal or better fitness and health outcomes compared to long duration endurance training (e.g. 30-60 min at lower intensity)

Little et al., 1985, Currie et al., 2013, Gibala & Jones, 2013, Gillan et al., 2013, Currie et al., 2012, Kessler et al., 2012

Mode of activity


- Cycling ergometer (stationary bike!)
 Running (treadmill or track)
 Whole body activity (e.g. burpees, jumping jacks, push ups etc.)
- Resistance exercise (e.g. body weight squats)

Tabata, 1996, Gillan, , Gabala, McCrae et al., 2012, Rozenek et al., 2007, and Kates, 2014

hwenger11

DETERMINING AEROBIC POWER AND CAPACITY IN RELATION TO VO₂ AND BLa

Aerobic (Anaerobic Threshold)

Work phase	4-15 min	
Rest phase	Dependent on work interval	
Work : rest ratio	2:1 – 5:1 (active)	
Intensity (% max effort)	Anaerobic threshold –5% to +10%	
Repetitions (number)	3-10	
Sets (number)	1-3	
Rest between sets	Variable – active rest	

Dave's workouts

Monday:

- 3-5 min warm up. 30 min steady state cycling
- Chins, bar dips, and knee raises and lowers (abs)
- Stretch 5 min
- Tuesday:
 - 3-5 min warm up. 3min:3min; 2min:2min; 1min:1min work:recovery (twice)
 - Inclined bench, seated rows, side arm raises
 - Stretch 5 min
 Wednesday:
 - 3-5 min warm up. 1min:1min work:recovery (10 times)
 - Arm curls, arm push downs, upright row
 - Stretch 5 min

Thursday:

- 3-5 min warm up. 1min:1min;2min:2min work:recovery (5 times)
- Pec deck (chest), lat pull downs, shoulder shrugs
- Stretch 5 min
- Friday:
 - 3-5 min warm up. 20sec:2 min work:recovery (3 times); Tabata intervals 20sec:10sec work:recovery (8 times); 1min:1min work:recovery (5 times)
 - Stretch 5 min
 - Standing bench press and upright row, ab workout (100 ab exercises and 30 leg raises and lowers (twice)

- You can also come up with your own variations
- Usually plan on 30 min of some form of aerobic work and about 20 min of strength exercises
- Workout generally takes 45-50 min and then
 5 min cool down and stretch

Questions?

Scheduling of training

Need to consider the following:

- Objectives of training phase
- Recovery time of energy system
 - Fuel supply
 - Metabolic clearance rates
- Requirement for skill and/or technical precision
- Minimum training loads for adaptation
- Reliance on other energy systems for enhanced development

General training principles for the energy systems

- When training the anaerobic systems (alactic and lactic)
 - First train for power and then for capacity
- When training the aerobic system
 - First train for capacity and then train for power

Scheduling of training

DURATION	INTENSITY	1/2 AND FULL RECOVERY	ENERGYSYSTEM
3 - 10 MINS	70-75%ME 95-100% max HR 95-100% VO2 max	20-30 MIN 1-2 HOURS [For lactic Acid] 5 -24 hours	AEROBIC POWER
10 min +	50-60% ME 70-80% AT;VT;LT	[For Glycogen] 10 hours 48 hours [for Glycogen]	AEROBIC CAPACITY

Breakout Activity

- Identify the key energy systems require by your sport including:
 - characteristics of the sport/event,
 - the intensity at which the athlete must compete,
 - the duration of the effort,
 - the duration and frequency of recovery periods,
 - and the chosen tactics/strategy.

Energy System Assessment

Validity

- Does the test really measure what its supposed to measure?
- Reliability
 - How reproducible are the results (test to test and between testers)?
- Meaningful difference
 - How sensitive is the test to a change in performance?

For all energy system tests consider

- ease of conducting test
- cost of equipment to conduct test
- ease of obtaining accurate results
- validity of test for determining power / capacity for the specific energy system
 population / sport the test is suited to
 availability of normative data

Anaerobic components

- Anaerobic alactic (ATP-PC)
 - Power
 - Capacity
- Anaerobic lactic (anaerobic glycolysis)
 - Power
 - Capacity
 - However.....

A practical framework

- Anaerobic peak power (highest value)
 Short term anaerobic capacity (<10s)
 Intermediate anaerobic capacity (20-30s)
 Long term anaerobic capacity (60-90s)
 - (Bouchard et al.,1991)

Anaerobic Tests

Performance Tests:

- 1. Anaerobic Speed Test (AST)
- 2. Wingate Test
- 3. Vertical jump or repeated jumps
- 4. Repeated sprint tests
- 5. "Claude Bouchard" time frame (0-120s)

Physiological additions:

- blood lactate measures following maximal effort (e.g. AST or Wingate)
- greater [lactate] \rightarrow higher anaerobic capacity
 - e.g. 17 mmol/L vs. 14 mmol/L

Aerobic Tests

- Performance measures (e.g. 12 min run, 10km, Beep)
- VO₂max test (sport specific)
- Submaximal economy tests
- Threshold tests (VT;LT)

Units of measurement

- L•min⁻¹ (absolute aerobic power)
 - mL•kg⁻¹•min⁻¹ (relative aerobic power)
 - Other recommendations
 - mL•kg^{-.69}•min⁻¹
 - mL•kg^{-.75}•min⁻¹
 - mL•ht²•min⁻¹

Maximal aerobic capacity

- Anaerobic threshold
 - Definition: The critical intensity at which energy production is no longer supplied primarily by aerobic (oxidative) metabolism

Measuring anaerobic threshold

Lactate threshold (LT)

- Definition: The critical intensity at which the blood lactate shows sudden non-linear increase (onset of blood lactate accumulation, OBLA). It is measured as the work increment that immediately precedes the first 1 mmol·L rise in blood lactate
- Some researchers use critical level
 - (e.g. 4 mmol•L of blood lactate)

Measuring anaerobic threshold

Ventilatory threshold (VT)

Definition: The point of non-linear increases in ventilation (Ve) related to VO₂. Reflects the changes in Ve, VO₂, and CO₂.

Non-invasive technique

Energy System *	Type of Training	Optimal Time	Work: Recovery Ratio	%Max Effort	%HR Max	HR Range**(b/min)	Lactate Range(m mol/L)	Characteristics
ATP-PC	All out sprint	10 - 30 sec	Complete recovery	95-100	95-100	180-190	Small amount	Preferential energy fuels are stored PC and ATP in muscle; muscle fiber recruitment always begins with Type I (slow twitch) followed quickly by Type IIa (fast oxidative) and Type IIb (fast nonoxidative) with emphasis on Type II fibers
LA	Short interval	30 - 90 sec	1:3	90-95	90-95	170-180	Maximum values (10- 30)	Highest rate of anaerobic glycolysis; blood glucose and some muscle glycogen are preferred energy sources; recruitment pattern of muscle fiber types is same as AN1 and increases occur in muscle anaerobic enzymes and there is improved buffering power of muscles and blood
ATP-PC LA O2	Moderate interval	90 sec - 5 min	1:2	85-90	85-90	165-170	6-10	Slightly lower exercise intensity than AN2; utilizes primarily glycogen from muscle and liver for shorter work bout and incorporates more O2 as work time is extended; excellent stimulation of cardiovascular delivery apparatus and improves VO2 max; all muscle fiber types will be used if intensity and exercise duration are increased
LA O	Long interval	5 – 20 min	1:1	80-85	80-85	155-160	4-6	This is very hard work and probably cannot be sustained much longer than 20 min without onset of fatigue; cellular O2 transport becomes a problem; major source of energy is glucose and glycogen with some fatty acid metabolism during longer work bouts; emphasizes use of fiber types I and IIa
O2 LA	Continuous work or Long interval	10 – 30 min	1:0.5 or 1:0.25	75-80	75-80	145-155	2-4	Primary objective of this intensity is to cause muscle to use oxygen more efficiently; should make up bulk of total training; Types I and IIa muscle fibers are used preferentially;although glycogen is used for energy, use of fatty acids becomes more important
0	Continuous	30 – 60 min	Continuous	65-75	65-75	125-145	2 or less	Uses continuous or interrupted exercise of long duration; major energy source is free fatty acids with some glycogen use; emphasizes Type I muscle fibers; often referred to as conversational pace
0	Continuous	60 - 120 min	Continuous	50-65	50-65	95-125	Very small amounts	Lowest level of aerobic stimuli; recommended for non-competitive recreational athletes; can maintain minimal fitness requirements; energy source is primarily free fatty acids; uses Type I and some IIa fibers
	ATP-PC LA ATP-PC LA O2 LA O O2 LA O	System Training ATP-PC All out sprint LA Short interval ATP-PC LA Moderate interval ATP-PC LA Moderate interval LA O Long interval Q2 Continuous work or Long interval O2 Continuous O Continuous	System *TrainingTimeATP-PCAll out sprint10 - 30 secLAShort interval30 - 90 secATP-PC LA O2Moderate interval90 sec - 5 minLA OLong interval5 - 20 minQ2Continuous work or Long interval10 - 30 minQContinuous30 - 60 min	System *TrainingTimeRatioATP-PCAll out sprint10 - 30 secComplete recoveryLAShort interval30 - 90 sec1:3ATP-PC LA O2Moderate interval90 sec - 5 min1:2LA OLong interval5 - 20 min1:1QContinuous work or Long interval10 - 30 min1:0.5 or 1:0.25QContinuous30 - 60 minContinuousQContinuous30 - 60 minContinuous	System *TrainingTimeRatioEffortATP-PC LA O2All out sprint10 - 30 secComplete recovery95-100LAShort interval O230 - 90 sec1:390-95ATP-PC LA O2Moderate interval pointerval90 sec - 5 min pointerval1:285-90LA OLong interval or Long interval5 - 20 min pointerval1:180-85Q2 LAContinuous work or Long interval10 - 30 min pointerval1:0.5 pointerval75-80Q2 LAContinuous work pointerval30 - 60 minContinuous pointerval5-75	SystemTrainingTimeRatioEffortWHR MaxATP-PCIII out sprint10 - 30 secComplete recovery95-10095-100IAShort interval30 - 90 sec1:390-9590-95ATP-PC LA O2Moderate interval90 sec - 5 min1:285-9085-90IA 0.ong interval5 - 20 min1:180-8580-85O2 LAContinuous work or Long interval10 - 30 min1:10.5 or 1:0.2575-8075-80OContinuous30 - 60 minContinuous65-7565-75	System Training Time Ratio Effort VeHR Max b/min) ATP-PC All out sprint 10 - 30 sec Complete recovery \$5-100 \$5-100 \$80-190 IA Short interval 0 - 90 sec 1.3 90-95 \$0-95 \$0-95 \$70-180 ATP-PC IA O2 Moderate interval 90 sec - 5 min 1:2 \$5-90 \$5-90 \$65-170 IA O Long interval \$0 sec - 5 min 1:2 \$5-90 \$5-90 \$55-160 IA O Cong interval \$0 - 20 min 1:1 \$0-85 \$0-85 \$55-160 IA O Continuous work or Long interval \$10 - 30 min \$1:0.5 or 1:0.25 \$7-80 \$7-80 \$45-155 O Continuous work or Long interval \$0 - 60 min Continuous \$5-75 \$2-75 \$2-145	System Training Time Ratio Effort MHRMax b/min) Range(m mol/L) ATP-PC All out sprint 10 - 30 sec Complete recovery 55-100 35-100 36-190 Small amount IA bhort interval 0 - 90 sec 1:3 90-95 90-95 170-180 Maximum values (10- 30) ATP-PC LA O2 Moderate interval 0 sec - 5 min 1:2 85-90 85-90 165-170 5-10 A O ong interval 5 - 20 min 1:1 80-85 80-85 155-160 4-6 Q2 Continuous work LA 0 - 30 min 1:1.0.5 or 1:0.25 75-80 75-80 145-155 2-4 Q2 Continuous 0 - 60 min Continuous 65-75 125-145 2 or less

Expressions of anaerobic threshold (AT)

- As a percentage of VO₂ max
- As a measure of VO₂ at AT
- As a heart rate at AT
- As a pace (running velocity, cycling, stoke rate etc.)

VO2 max Norms

Sport	Age	Male	Female
Baseball	18-32	48-56	52-57
Basketball	18-30	40-60	43-60
Cycling	18-26	62-74	47-57
Canoeing	22-28	55-67	48-52
Football (USA)	20-36	42-60	
Gymnastics	18-22	52-58	35-50
Ice Hockey	10-30	50-63	
Orienteering	20-60	47-53	46-60
Rowing	20-35	60-72	58-65
Skiing alpine	18-30	57-68	50-55
Skiing nordic	20-28	65-94	60-75
Soccer	22-28	54-64	50-60
Speed skating	18-24	56-73	44-55
Swimming	10-25	50-70	40-60
Track & Field - Discus	22-30	42-55	
Track & Field - Running	18-39	60-85	50-75
Track & Field - Running	40-75	40-60	35-60
Track & Field - Shot	22-30	40-46	
Volleyball	18-22		40-56

Courtesy of www

ν̈́O _{2max}	Performance Time for Various Distances (hours:minutes:seconds)						
mlkg ⁻¹ min ⁻¹)	1.5 km	1 mile	5 km	10 km	42.2 km		
28	13:30	14:46	56:49	2:39:14	31:41:25		
31.5	11:27	12:29	47:04	2:02:00	16:35:05		
35	9:56	10:49	40:10	1:38:53	11:13:52		
38.5	8:46	9:33	35:02	1:23:08	8:29:26		
42	7:51	8:33	31:04	1:11:43	6:49:30		
45.5	7:07	7:44	27:54	1:03:03	5:42:21		
49	6:30	7:03	25:20	0:56:15	4:54:07		
52.5	5:59	6:29	23:11	0:50:47	4:17:48		
56	5:32	6:01	21:23	0:46:17	3:49:28		
59.5	5:09	5:36	19:50	0:42:30	3:26:44		
63	4:50	5:14	18:30	0:39:33	3:08:06		
66.5	4:32	4:55	17:20	0:36:33	2:52:34		
70	4:17	4:38	16:18	0:34:10	2:39:23		
73.5	4:03	4:23	15:23	0:32:12	2:28:05		
77	3:50	4:09	14:34	0:30:12	2:18:16		
80.5	3:39	3:57	13:50	0:28:33	2:09:41		
84	3:29	3:46	13:10	0:27:04	2:02:06		
87.5	3:20	3:36	12:34	0:25:44	1:55:21		

Training the energy systems

ATP-CP

	Interval
Work phase	1-10 SEC
Rest phase	10-100 sec (passive)
Work : rest ratio	1:10
Intensity (% max effort)	98-100%
Repetitions (number)	4-6
Sets (number)	2-4
Rest between sets	5-10 min (light active)

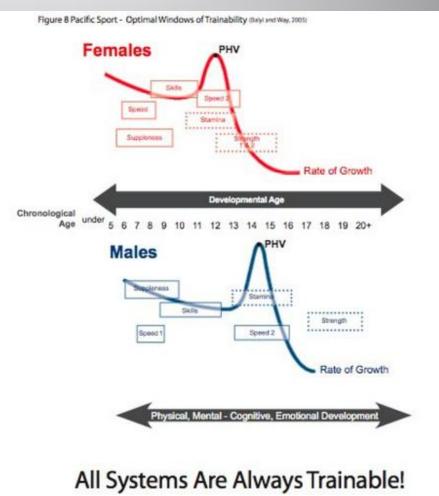
Reps depend on ability to maintain velocity and form How do you know? Need to time them and watch!! Get feedback from athletes

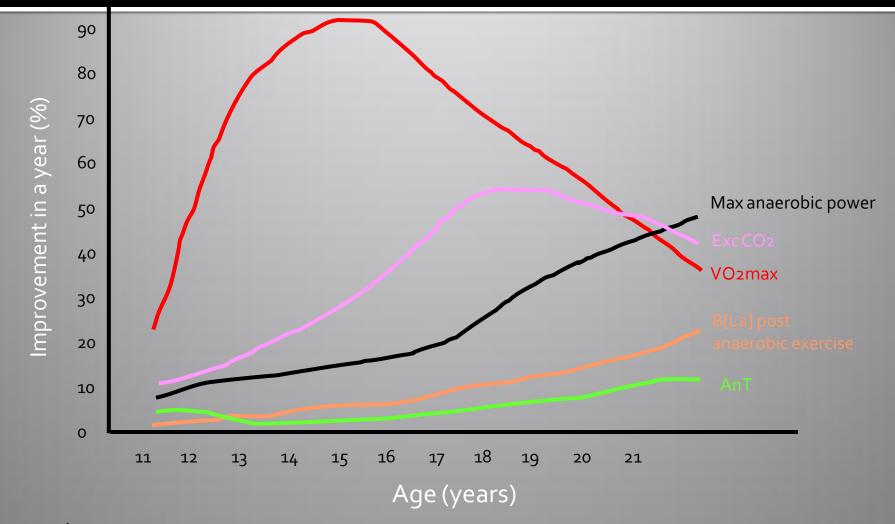
Anaerobic Lactic

	Interval
Work phase	30-1205
Rest phase	90-360s (active is best)
Work : rest ratio	1:3
Intensity (% max effort)	80-85%
Repetitions (number)	4-6
Sets (number)	1-4
Rest between sets	5-10 min

- 1. Accumulate lactic acid in blood and muscle
- 2. Allow time for complete recovery
- 3. Shorter recovery results in waste products accumulating over the duration of the set (helpful for training body to tolerate high levels of lactate)

Breakout activity


 Identify two or three fitness tests used in your sport and relate to the energy systems they are measuring
 Evaluate the validity and reliability of the tests


"I thought for a minute I'd lost you there but I guess the old stetho's on the blink."

Trainability?

- Different muscle biochemistry in pre-puberty
 Low levels of enzyme PFK
 Train nervous system for speed
- Balyi and Way 2008 –
 Speed 1 and 2

Influence of maturation...

Voitenko, 1985

Aerobic Power

$VO_2 = CO x (a-v)O_2$ difference

Aerobic Power

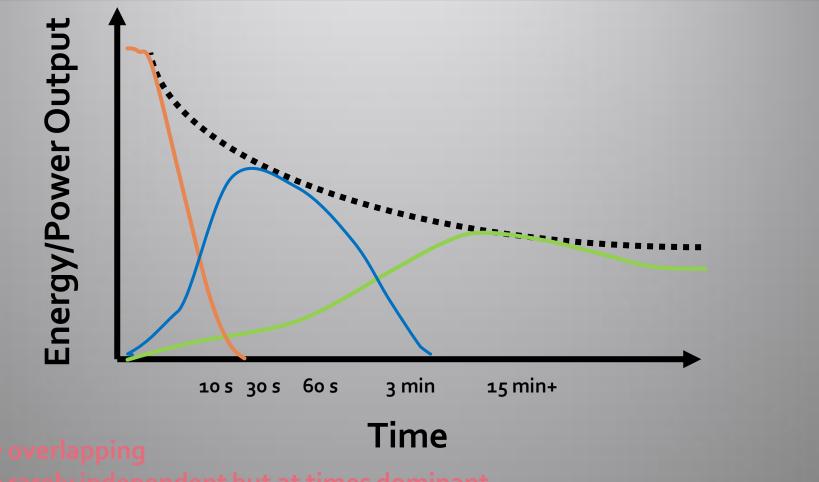
Maximal aerobic power:

- maximal oxygen uptake, VO2max
- point @ which oxygen consumption
 plateaus & shows no further increase (or
 increases slightly) with an additional
 workload

Aerobic Power

Maximal aerobic power:

- VO2max; good interpreter of endurance performance when studying heterogenous group
 - BUT...relatively poor when examining athletes of similar ability level (homogenous group!)


Factors Affecting Anaerobic Performance

- age
- gender
- rate of ATP production
- initial levels of muscle glycogen
- ability to tolerate low intracellular pH
- efficiency of metabolic pathways

- muscle mass
- heredity
- distribution of fibre type
- state of training use of substrates/tolerance

 efficiency of aerobic pathways - WHY?

Energy System Continuum

rarely independent but at times dominant