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How does experience change the way we perceive the world? 
This Element explores the interaction between perception 
and experience by studying perceptual experts, people who 
specialize in recognizing objects such as birds, automobiles, 
and dogs. It proposes perceptual expertise promotes a 
downward shift in object recognition where experts recognize 
objects in their domain of expertise at a more specific level 
than novices. To support this claim, it examines the recognition 
abilities and brain mechanisms of real-world experts. It 
discusses the acquisition of expertise by tracing the cognitive 
and neural changes that occur as a novice becomes an expert 
through training and experience. Next, it looks “under the hood” 
of expertise and examines the perceptual features that experts 
bring to bear to facilitate their fast, accurate, and specific 
recognition. The final section considers the future of human 
expertise as deep learning models and artificial intelligence 
compete with human experts in medical diagnosis.
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1 Introduction: How Experience Changes the Way We See
the World

Experts see the world differently. On a walk in the woods, the bird expert

immediately recognizes that feathery brown object flitting in the bush as

a “chipping sparrow,”while the same object appears to the untrained eye simply

as a bird. The vehicle that comes roaring down the street is instantly identified as

a “1964 Ford Mustang” by a car aficionado, whereas the novice sees the vehicle

merely as some old noisy sports car.

Anecdotally, at least, it seems that experts perceive objects in their domain of

expertise at a finer grain of visual detail and this is reflected in their ability to

identify these objects with more specific, descriptive names. In this section, we

try to unpack this interaction between perception, objects, and names. We will

examine how experience changes the way we see things in our world and how

the shift in perception is reflected in the category labels that we use to identify

objects. By recognizing that the human mind employs categories at various

levels of generality and specificity, we can notice that perceptual expertise is

characterized by a downward shift in object recognition where experts move

from a novice’s broad classifications of everyday objects to a more detailed,

what we will call subordinate level, for the objects in their domain of expertise.

Using the downward shift criterion, we examine the processes of real-world

experts, such as expert birdwatchers and dog judges, as well as laboratory-

trained experts. We will also consider the varieties and range of human experts

such as children with defined special interests. We will consider the constraints

and robustness of the expert recognition where it can be limited to the recogni-

tion of a single highly familiar object or extend to the recognition of novel

unfamiliar objects in novel but related domains. Next, we will look under the

hood of expertise and examine the kind of perceptual information (e.g., color,

spatial frequency) that experts bring to bear to facilitate their expert recognition

judgments. We then discuss changes in neural processes of object recognition as

a consequence of domain-specific experience and trace the neural changes that

occur as a novice becomes an expert. In the final section, we consider the future

and fate of human expertise as deep learning models and artificial intelligence

(AI) assist human experts in the realm of medical diagnosis.

2 The Basic Level Category As the Entry Point of Visual
Recognition

Because a single object can be identified at multiple levels of abstraction, it is

not obvious at what level the object should be instantiated, recognized, and

named (Brown, 1958). My cat Max is a member of the general categories of

1The Expertise of Perception
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“living thing,” “animal,” “mammal,” but he is also a member of more specific

categories such as the genus “Felis,” the species “Chartreux,” and even the

specific category of his particular identity “Max.” Because an object is simul-

taneously a member of many categories, the observer must decide the level at

which the object is first identified and subsequently named. The name that

I assign to the “furry creature” sitting on my couch is not arbitrary but reflects

different kinds of perceptual and semantic information and reveals something

fundamental about the underlying representations that govern the object recog-

nition process.

In her seminal work, Eleanor Rosch (1976) argued that there is one preferred

level of abstraction that takes precedence over all others – what she referred to

as the “basic” level. This is the level of abstraction that defines the interactions

between objects and humans in the environment. For Rosch, the basic level was

defined by the “structure in the world” where object features form natural

bundles of “perceptual and functional information that form natural discontinu-

ities, and that basic cuts in categorization are made at these discontinuities”

(Rosch et al., 1976).

To probe the contents of categories at different levels of abstraction, Rosch

and colleagues employed a feature listing task where participants were asked to

list characteristic features for objects at a general, superordinate level (“ani-

mal,” “furniture,” “vehicle”), an intermediate basic level (“bird,” “chair,”

“car”), and a specific, subordinate level (“sparrow,” “rocking chair,” “sedan”)

of categorization (Rosch et al., 1976) (for a recent review, see Hajibayova,

2013). The key finding was that participants listed many more attributes for the

basic categories than for superordinate categories and subordinate level cat-

egories. For example, participants described many more features for the basic

level “car” (e.g., has four wheels, a steering wheel, can be electric or gas, has

a trunk, has an engine, used to carry passengers) than the superordinate level

“vehicle” (e.g., used for transportation) and the subordinate level “sedan” (e.g.,

four doors). Distinct from superordinate and subordinate level categories,

participants can provide significantly more information about the appearance

of a basic level object such as its parts and features (Rama Fiorini et al., 2014;

Tversky, 1989; Tversky & Hemenway, 1984). In contrast, superordinate level

categories contain abstract, semantic features (e.g., “animal”: reproduces,

breathes, is animated) and subordinate level categories contain detailed, per-

ceptual features (e.g., “sparrow”: small, brown, flits around).

According to Rosch, the basic level objects share a kind of “perceptual glue”

that binds category members together in a way that category members start to

look alike. For example, whereas members of the category “animal” (e.g.,

giraffes, beetles, and horses) vary considerably in their size and shape, members

2 Perception
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of the basic level category “dog” (e.g., beagles, boxers, and poodles) take on

a similar visual appearance.

To demonstrate this idea, one study collected photographs of objects from

a variety of superordinate categories such as furniture, clothing, vehicles, and

animals (Rosch et al., 1976). After the photographs were standardized for size

and orientation, they projected the objects onto a screen and traced the shape

outlines of the objects on a piece of paper. The researchers then measured the

amount of shape overlap for objects at different levels of categorization. Objects

belonging to the same basic level category demonstrated a large amount of

shape overlap indicating greater perceptual similarity at the basic level whereas

objects from the different basic categories are dissimilar. For example, whereas

all “dogs” roughly resemble one another in their visual appearance, dogs look

different frommembers of contrasting basic categories, such as cats, horses, and

rabbits (see Figure 1).

In contrast, objects belonging to the same superordinate level categories

(animal, vehicle, furniture) displayed virtually no shape overlap. Conversely,

subordinate level objects tend to share a great deal of shape overlap with other

subordinate level category members and are therefore more difficult to percep-

tually differentiate. Thus, basic level categories constitute the optimum level for

object recognition because, on one hand, category members are perceptually

Figure 1 An object can be classified at multiple levels of categorization. The

entry point is the level of categorization at which an object is first recognized.

For novices, the entry point is the basic level of categorization, and for experts,

the entry point is the subordinate level.
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similar to one another and, on the other hand, they are perceptually easy to

differentiate from other contrasting basic level categories.

Given that objects are optimally differentiated at the basic level, it follows

that people should show a basic level advantage in the speed of recognition or

what has been referred to as the entry point of object recognition. The entry

point is defined as the level of abstraction at which a perceived object stimulus

first makes contact with an object representation in memory (Jolicoeur et al.,

1984). In support of the claim that basic levels are the entry point of recognition

is the fact that people typically prefer to use basic level terms such as “car,”

“chair,” and “saw” when naming objects. This word preference suggests that

this is the level that first comes to mind when identifying an object unlike more

superordinate terms such as “vehicle,” “furniture,” or “tool” or more subordin-

ate terms like “sedan” or “armchair” (Rosch et al., 1976).

Category verification tasks have been employed as a more exact measure of

the speed of recognition. In this task, participants are shown a category label

followed by a picture and are asked to decide whether the picture matches the

category label. The consistent finding is that participants are fastest to verify

objects with a basic level category label (e.g., “dog,” “car”) and slower to verify

the same objects with a more general superordinate (e.g., “animal,” “vehicle”)

or more specific, subordinate (e.g., “beagle,” “Honda”) label. These results

provide compelling evidence that most people first recognize an object as

a basic level category (Jolicoeur et al., 1984; Murphy & Smith, 1982; Rosch

et al., 1976).

Category verifications that are superordinate or subordinate may take more

time to process than the basic level verifications, but for different reasons.

Members of the superordinate categories share abstract semantic properties

that are not directly tied to the perceptual image of the object. For example,

objects belonging to the superordinate category “animal” share features such

that they “breathe,” “reproduce,” “are animate,” and so on, but these character-

istics are not “seeable” attributes but are more abstract related to an object’s

conceptual, semantic, and taxonomic properties. Consistent with this view,

Jolicoeur et al. (1984) found that the time required to make superordinate

categorizations (“animal”) was the same regardless of whether participants

were shown a basic level picture (e.g., dog) or a basic level word (e.g.,

“dog”). Hence, superordinate categorizations are not directly tied to the percep-

tual features of the object.

In contrast, subordinate level categories are inherently perceptual. For

instance, to distinguish a warbler from a finch or to discern the difference

between a meringue and a shitake mushroom, additional encoding time is

needed to scrutinize the details of the object. As a test of the perceptual nature

4 Perception
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of subordinate level judgments, Jolicoeur et al. (1984) displayed pictures of

common birds, dogs, cars, and boats for short (75 ms) and long durations

(1,000 ms). Participants were asked to categorize the pictures at either the

superordinate (“animal”), basic (“dog”), or subordinate (“collie”) levels of

abstraction. However, under the short exposure duration, participants were

reliably slower and less accurate when categorizing objects at the subordinate

level. The impaired performance indicates that additional encoding time was

needed to abstract the perceptual details of the object when categorizing objects

at the subordinate level.

For most of us, the basic level is the most immediate level at which the

external perceptual object first makes contact with a stored representation in our

visual memory. The primacy of the basic level category is reflected in our use of

basic level words (e.g., “car,” “dog,” “tree”) in language and language instruc-

tion. Basic level words are used the most frequently when adults converse with

children (Callanan, 1985; Murphy, 2016), they are the words that children first

use in language acquisition (Anglin, 1977; Bornstein & Arterberry, 2010), and

they are the words that occur most frequently in written text (Wisniewski &

Murphy, 1989). Thus, objects are optimally differentiated at the basic level in

that objects that belong to the same basic categories are visually similar to one

another and visually dissimilar to members of other basic level categories

(Murphy & Brownell, 1985).

3 The Downward Shift Hypothesis

The story appears to be different for experts in their domain, however, where the

most meaningful level of abstraction is the more specific, subordinate level.

Because experts can employ a rich language of their own of many subordinate

level terms, subordinate categories seem to be the most relevant and salient

when investigating expertise. Veteran plumbers, for example, refer to a basic

level wrench by its specific type such as a “basin,” “chain pipe,” or “monkey”

wrench. Equestrians prefer to identify horses by their breeds, “Friesian,”

“Morgan,” and “Arabian,” or by the names of individual horses such as

“Champ,” “Bolt,” or “Trigger.” The language of experts reveals a more nuanced

understanding and perception of objects in their domain of expertise that is more

specific than the basic level of the novice. Anecdotally, at least, it seems that the

experts are aware of the subtle, visual details that differentiate objects in their

domain of expertise. A bird expert observes the characteristic markings, curved

wings, and swoopingmovements of a barn swallow or the car expert appreciates

the distinctive shape of the halogen, ringed headlight on a Series 3 BMW

automobile.

5The Expertise of Perception
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The specific names used by experts, and their speed and accuracy, suggests a

“downward shift” in their entry level recognition from the basic level to the

subordinate level. Notably, in her original paper, Rosch observed that one of her

participants – an airplane mechanic – seemed to perceive airplanes at a more

specific level than the basic level applied by novices. For example, when

making judgments about airplanes, this expert listed many more features than

the other participants and could imagine airplanes from different perspectives.

This expertise view posits that basic levels are not rigidly fixed by the percep-

tual structure of the world but are malleable to the influences of experience and

learning. According to the downward shift hypothesis, with experience and

learning, the entry level of recognition can shift to a level that is more specific

and subordinate to the basic level.

To examine the “downward shift” claim, Tanaka and Taylor (1991) recruited

expert dog judges and breeders and expert birdwatchers, all of whom had

a minimum of ten years of experience in their specialty domain. Similar to the

Rosch et al. (1976) study, the dog and bird experts were asked to perform

a series of tasks (i.e., feature listing, naming, category verification) intended

to tap into their entry level representations. Crucially, the bird and dog experts

completed the entry level tasks for both bird and dog stimuli. In this design, the

participants served as their own controls where they were expected to perform

as experts when carrying out tasks in their domain of expertise (e.g., a bird

expert naming pictures of birds) and behave as novices when performing tasks

in the nonexpert domain (e.g., a bird expert naming pictures of dogs). Hence,

these differences can be attributed to their experience rather than differences

related to the participants themselves, such as their level of education, cognitive

function, or motivation.

Following these methods, Tanaka and Taylor asked participants to list fea-

tures for birds and dogs at the superordinate, basic, and subordinate levels.

Consistent with Rosch’s original findings, participants listed significantly many

more features at the basic level than the superordinate or subordinate level in the

novice domain. Critically, in their domain of expertise, participants added many

more features at the subordinate level so that the subordinate categories con-

tained as many distinctive features as the basic level. A large portion of these

features were perceptual in nature, referring to the visual features such as color,

size, and markings. For example, when listing features for the subordinate level

“robin,” the bird expert would note the distinctive eye-ring of the bird and its

orange coloration. The feature listing task provides some evidence that experts

view objects in their domain of expertise at a finer grain of analysis.

The type of label with which we spontaneously name an object provides

insights into the level of the mental representation (Brown, 1958). As

6 Perception
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demonstrated by Rosch, for many of us, the most immediate level in naming is

the basic level where we first identify an object by its basic level name (“chair,”

“car,” “dog,” “horse”). If experts are more attuned to the perceptual details that

distinguish objects at the subordinate level, this increased distinctiveness might

be reflected in preference for the subordinate level category in their naming

behaviors.

In a free-naming study, Tanaka and Taylor presented pictures of common

birds (e.g., robin, sparrow, cardinal) and dogs (e.g., beagle, German shep-

herd, poodle) to the expert participants and asked them to identify the images

with the first name that comes to mind. Replicating the Rosch et al. (1976)

results, participants produced basic level names the majority of the time

(76 percent) when identifying objects in their novice domain. However, in

their expert domain, participants were as likely to produce subordinate names

as basic ones. The production of subordinate level names was more pro-

nounced for bird experts, however, who used subordinates 74 percent of the

time, compared to only 40 percent for dog experts. The naming difference

between bird and dog experts might be due to the different demands of each

expertise. Quick and accurate identification at the subordinate species level is

what defines a bird expert whereas subordinate level naming is not as essen-

tial to the dog expert – many dog experts specialize in only one breed, for

example. The naming results provide preliminary evidence that the subor-

dinate level is the level that first comes to mind when experts of different

domains identify objects.

If naming reflects the accessibility of subordinate level concepts, experts

should also be fast to categorize objects at the subordinate level in a reaction

time task. To measure the speed of recognition, Tanaka and Taylor (1991) used

a category verification task where participants were asked to categorize pictures

of objects from the expert and novice domains at either superordinate, basic, or

subordinate levels as quickly as possible. When participants categorized objects

in the novice domain (e.g., bird experts categorizing pictures of dogs), the

results mirrored the original findings of Rosch et al. (1976) where participants

were fastest to categorize objects at the basic level and slower at the superordin-

ate and subordinate levels.

Interestingly, basic level response times in this study were the same for both

expert and novice participants. For example, bird experts were as fast to

categorize an object as a “dog” as dog experts, indicating that expertise has

little effect on basic level judgments. However, a different pattern of results

emerged when participants made subordinate level categorizations for objects

in their domain of expertise. Consistent with the downward shift hypothesis,

experts were as fast to categorize objects from their domain of expertise at the
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subordinate level as they were to categorize the same object at the basic level

(see Figure 2). Although subordinate and basic level categorizations were

equally accessible in terms of their reaction time responses, arguably subordin-

ate level categories would be the preferred level of entry point recognition

because they provide more attributes than basic level categories (e.g., we know

more about an object if it is identified as a “robin” than as a “bird”).

The Tanaka and Taylor (1991) experiments provide a plausible account of the

downward shift hypothesis that expertise can alter the basic level. For the

expert, perceptual knowledge of objects accumulates at the subordinate level,

increasing the distinctiveness of this more specific category level (Murphy &

Brownell 1985). This enhanced salience of subordinate level concepts allows

the expert to spontaneously name and to quickly recognize objects at this

specific level of abstraction. Based on these findings, experts perceive objects

in their domain of expertise at a fundamentally different level of abstraction

than the novices.

Results in favor of the downward shift hypothesis force researchers to

reconsider what is meant by a basic level category. On one hand, Rosch et al.

(1976) are correct that the structure of the world privileges a particular level of

Figure 2 Reaction time results from the Tanaka and Taylor (1991) study

showing that experts demonstrate a downward shift in their entry point

recognition where their response times are equally fast for subordinate level

categorizations as basic level categorizations.

8 Perception
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abstraction – the so-called basic level – where things begin to look alike. As

a consequence, this is the level at which our knowledge about objects is

concentrated. On the other hand, the basic level is not fixed by the external

environment but is malleable to the influence of experience and motivation. As

the expertise studies demonstrate, the so-called basic level can shift downwards

to the more specific, subordinate level. For the expert, the subordinate level

serves as their functional basic level in terms of where knowledge accumulates

and how objects are recognized in their domain. The Rosch and expertise views

can be reconciled by allowing for two types of basic level categories:

a “structural” basic category that is predisposed by the perceptual environment

and a “psychological” basic category that is defined by the intent and experience

of the observer. For most of us when recognizing objects in our world, Rosch’s

basic level (e.g., car, chair, dog) is the most immediate and readily accessible

representation based on the structure of things in the world and therefore serves

as our entry point in recognition. However, for the expert, the subordinate level

is the most salient and accessible category level at which domain objects are

first named and recognized.

4 Everyday, Developmental, and Neurodivergent Expertise

Although only a fraction of the population qualifies as skilled birdwatchers or

dog experts, people commonly perform acts of perceptual expertise in their

everyday lives. We exhibit a downward shift in recognition when we quickly

and accurately recognize the person coming down the hall as the face of our

friend or colleague. Everyday perceptual expertise is demonstrated when we

identify familiar places and buildings in our environment where common

landmarks and monuments such as the Leaning Tower of Pisa are recognized

faster at the instance level than at the basic level. Interestingly, familiar land-

marks were slower to be categorized at the basic and superordinate levels than

unfamiliar landmarks. For example, the familiar YMCA tower in Israel was

slower to be verified as a “tower” than a nondescript unfamiliar tower (Anaki &

Bentin, 2009). Similarly, people show a downward shift in recognition when

they identify famous paintings by their name or by the particular artist’s name

(Belke et al., 2010).

Perceptual expertise is not only reserved for the identification of well-

known pieces of art and architecture; expert recognition is exhibited every

time we reach for our favorite coffee cup or put on our pair of cozy slippers.

Miyakoshi et al. (2007) investigated this kind of personalized expertise by

asking participants to passively view cups, shoes, handbags, and umbrellas

that were their own personal items while monitoring their brain activity with

9The Expertise of Perception
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EEG. The results showed the brain response to personally familiar items was

greater than to unfamiliar objects, suggesting that items previously known to

participants were accessed through stored representations in visual memory.

Pierce et al. (2011) found similar effects when participants identified their own

personal items, such as their keys. Thus, unlike the expertise of birdwatchers,

dog judges, and automobile aficionados, this type of personalized expertise is

hyper-specialized, restricted to the recognition of a single item within the

object category, and does not generalize to other category exemplars. For

example, if a person is able to recognize their own golden retriever, their

expert recognition does not necessarily transfer to the recognition of other

golden retrievers.

In contrast to experts within a population, cross-cultural research has shown

that groups of people or entire societies might demonstrate a level of recognition

that is more specific than the conventional basic level. For example, Dougherty

(1978) asked American children from an urban US city and Tzeltal Mayan

children in Mexico to identify pictures of common plants. Whereas the US

children labeled plants at the family level (e.g., tree), Tzeltal children labeled

the plants by their more subordinate folk genera names (e.g., aspen, oak,

redwood, and monkey tree). Why the difference in naming? According to

Dougherty, the preferred level of categorization is determined by functional

interactions between the environment and the categorizer. Because Tzeltal

people live in an agrarian society, much of their lives revolves around their

interactions with plants and knowledge about the local flora. For the Tzeltal,

folk genera categories are the most efficient and informative level of abstraction

in communicating plant knowledge. The cross-cultural work demonstrates that

basic level categories are relative; what is basic to one culture is not necessarily

basic to another depending on the category demands of the environment or

culture (Malt, 1995; Winkler-Rhoades et al., 2010).

While it is not unusual for youngsters to become fascinated by a favorite toy,

a particular pet, or the neighborhood construction tractor, for about a third of

young children, this interest becomes more than a passing fascination but

develops into an “extremely intense interest” (EII) (DeLoache et al., 2007).

Like adult experts, the EII children are obsessed with things from their domain

of interest and seek out opportunities to pursue and engage in activities related

to their passion. One such child exhibited an extreme interest in trains:

[F]rom about 18 months of age, he would point out anything that resembled
train tracks – car tracks in the sand at the beach, fences, stitching on clothing,
and even zippers. After he received a Thomas the Tank Engine railroad set for
his second birthday, he played with it for hours every day. He even slept with
his trains. He watched train videos that his parents and others bought for him
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“countless times.” The local librarian knew of his interest and saved books
about trains for him to check out on his weekly visit.

(DeLoache et al., 2007, p. 1582)

EII typically emerges at about eighteen months of age, is three times more

prevalent in boys than girls (Alexander et al., 2008; DeLoache et al., 2007), and

is positively correlated with scores on verbal intelligence tests (Johnson &

Eilers, 1998; Johnson & Mervis, 1994). Children with EII are enamored with

items from more conventional categories such as automobiles, dinosaurs, and

trains, but they can also become obsessed with things from more idiosyncratic

object domains such as blenders, puzzles, or Wizard of Oz memorabilia

(Alexander et al., 2008; DeLoache et al., 2007). For the child with an EII, the

interest is relatively long-lived (lasting at least sixteen to twenty-two months),

exhibited in different social contexts (home, friends’ homes, school), directed

toward multiple objects/activities within the category of interest (real objects,

replicas, pictures, videos, social media), and frequently noticed by people

outside the immediate family (friends, extended family, teachers) (DeLoache

et al., 2007).

Like adult experts, children with EII demonstrate a downward shift in their

recognition strategies in which they prefer to identify objects in their domain of

interest with subordinate level rather than basic level labels (Johnson & Eilers,

1998; Johnson et al., 2004; Johnson &Mervis, 1997). For example, “Ari” at two

years of age developed an EII for birds and birdwatching (Johnson & Mervis,

1994). By age 4 years 5 months, Ari was able to identify 118 different types of

perching birds. Similar to adult experts, Ari’s expertise involved a sophisticated

understanding about the taxonomic relations and behavioral habits of birds. To

test his conceptual knowledge, Ari was presented with a triad of birds and asked

which two “go together.” Unlike his age-matched novice peers who made their

groupings based on perceptual features, Ari sorted his birds based on nonvisual

conceptual features (like diet or habitat).

Although children with EIIs possess an integrated, coherent knowledge

about domain objects that allow them to go beyond their obvious explicit

perceptual features to uncover their implicit functional connections (Gobbo &

Chi, 1986), other research suggests that they are not mini-adult experts. When

conceptual knowledge and perceptual appearance are pitted against one

another, children with EII, unlike adults, will rely more on visual-based

explanations, indicating that a child’s deeper theory about objects can be

overridden by their surface features (Johnson et al., 2004). Whereas the

conceptual knowledge of expert adults is flexible and robust, the knowledge

of children with EII is more compartmentalized and restricted to the domain
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of interest. For example, when drawing inferences about dinosaurs, both child

and adult experts were able to make inferences about familiar dinosaurs. For

instance, both groups correctly inferred that the long neck of the

Mamenchisaurus dinosaur allowed the animal to eat leaves from tall trees.

However, adult experts were able to apply causal concepts to novel domains,

such as shorebirds, where the adults were able to infer that the long toes of the

Gallinule shorebird helped to support its weight on water plants (Johnson

et al., 2004). In contrast, children who possess extensive knowledge about

dinosaurs were not able to make inferential leaps to shorebirds. In sum,

children with EII demonstrate unusual abilities to recognize and make infer-

ences about objects in their domain of interest. At the same time, the

inferential judgments of EII children were more strongly bound to the

perceptual appearance of objects and restricted to their specialized domain

of interest.

As outlined by the Diagnostic and Statistical Manual of Mental

Disorders – Fourth Edition (DSM-IV), children on the autism spectrum are

characterized by repetitive and restricted behaviors. For some children on the

spectrum, restricted behaviors manifest themselves as perseverative and stereo-

typic motor movements (e.g., rocking back-and-forth movements), but for

others, these restricted behaviors are displayed as circumscribed interests in

specific domains that are not dissimilar to the interests exhibited by children

with EII. However, in contrast to children with EII, children on the autism

spectrum become so absorbed and consumed by their circumscribed interest

that it comes at a cost of establishing meaningful social relationships with others

(Klin et al., 2007).

Circumscribed interests are exhibited in 90 percent of surveyed children on

the autism spectrum and often appear by preschool ages (Klin et al., 2007). The

circumscribed interests of children on the autism spectrum include the same

domains typical of children with EII with a focus on nonsocial domains, such as

mechanical objects, trains, rocks, cartoon characters, calendars, Pokémon, and

dress-up clothing (Klin et al., 2007; Turner-Brown et al., 2011). As an indicator

of their expertise, autistic children with circumscribed interests display

a downward shift in identification for objects in their specialty domain. For

example, a child with a circumscribed interest in Pokémon identified these

characters with specific subordinate level names (Grelotti et al., 2005).

Although spanning a range and diversity of interests, it has been speculated

that the common factor of circumscribed activities in autism is the identification

of patterns in stimuli –what some have referred to as “systemizing” (Baron-

Cohen et al. 2009; Baron-Cohen & Wheelwright, 1999). Systemizing is the

motivation to analyze and understand the regularities and rules that govern
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a system in order to predict how that system will behave. Systemizing can take

on many forms, such as motion systemizing (e.g., watching washing machines),

spatial systemizing (e.g., obsession with maps and routes), and mechanical

systemizing (e.g., obsession with vacuum cleaners). The precursor to systemiz-

ing theory is the child’s hyper-attention to the perceptual details of the system

that comprise its basic rules or features (Baron-Cohen et al., 2009; Wang et al.,

2007). For children with circumscribed interests, attention to detail is an

important step for achieving an understanding of the workings of the complete

system (Baron-Cohen et al., 2009).

In summary, children with EII and autistic children with circumscribed

interests share some similarities with adult experts. Like adult experts, children

with special interests attend to the perceptual details of the stimuli (Baron-

Cohen et al., 2009) and exhibit a downward shift when identifying objects in

their domain (Grelotti et al., 2005; Johnson & Mervis, 1994; Johnson & Eilers,

1998; Johnson et al., 2004). Like adult experts, the perceptual and semantic

advantages of children with specialized interests appear to be confined to

familiar objects and categories in their domain. So, while EII and autistic

children present many of the trademark characteristics associated with percep-

tual expertise, they often lack the deeper conceptual knowledge that are the

standards in adult expertise.

5 Perceptual Expertise in the Laboratory

Studying experts “in the wild” provides valuable insights into the consequence

of real-world expertise; however, these studies fall short of explaining the

process by which a person acquires perceptual expertise. For this reason,

laboratory training studies are helpful for understanding the conditions and

mechanisms that produce expertise (Gauthier & Tarr, 1997b; Scott et al.,

2008; Tanaka et al., 2005). In a standard laboratory training study, researchers

have full control over the selection of participants, the training stimuli, the

schedule, and the monitoring of training performance and the learning and

transfer conditions (Shen et al., 2014). However, the tradeoff of laboratory

studies is their ecological validity; that is, by tightly controlling participant,

stimulus, and learning factors, these studies might miss the richness and

nuances of expertise as it is acquired and occurs in the real world.

Based on the abovementioned studies of real-world experts, we know that one

hallmark of perceptual expertise is a downward shift in their entry level recogni-

tion to a much more detailed perceptual representation as reflected in the accessi-

bility of the subordinate level word labels. Can subordinate level labels be

“reversed engineered” to promote perceptual expertise? Can the same linguistic
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labels be applied to induce fine-grain visual perceptions in the laboratory? In

a landmark study, Gauthier and Tarr (1997) designed families of artificial “yoda-

like” objects that they referred to as “Greebles.” Like natural categories, Greebles

who belong to the same family shared basic level features in that they all

contained the same parts (boges, quiff, dunth) arranged in a similar configuration

(see Figure 3). Hence, learning to identify Greebles at the subordinate level

required detailed detection of subtle variations in the Greeble parts and configur-

ation. In their training experiment, participants learned to identify the Greebles at

the different levels of categorization: family (samar, osmit, galii), sex (plok, glik),

and individual (pimo) based on Greeble parts (boges, quiff, dunth).

Over the course of twoweeks, participants received ten sessions of training to

classify the Greebles at the family, sex, and individual levels. After training,

participants demonstrated the characteristic downward shift in recognition

where their response times to identify the Greebles at the individual level

approximated the response times to identify the Greebles at the more general

family and gender levels. Moreover, expert participants were faster to identify

Greebles whose boges, quiff, and dunth parts were arranged in a similar config-

uration as the trained Greebles than Greebles shown in a new configuration. The

sensitivity to the configuration of parts was found in experts but not in novices.

Whereas learning generalized to new Greebles with similar parts and configur-

ations as the training Greebles, the learning did not transfer to Greebles with

new parts and configurations. The transfer results suggest that perceptual

expertise was fine-tuned to specific types of Greebles and the configuration of

parts but did not generalize to new families of Greebles.

Another important question is whether it is the quality or the quantity of the

perceptual training that drives expertise. Experts invest countless hours engaged

Boges

Quiff

Dunth

Set A

Set B

Set C

Set D

Figure 3 Examples of Greeble parts and Greeble families (Gauthier & Tarr, 1997a).
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in activities related to their avocation; birders go on birdwatching field trips, car

aficionados attend car shows, and trainspotters spend hours observing trains. It

is plausible that experts simply have more perceptual exposure to and experi-

ence with objects in their domain of expertise than novices and this experience

leads to the downward shift effect.

As a test of the quantity versus quality accounts of perceptual expertise,

Tanaka et al. (2005) taught novice participants to classify ten varieties of

wading birds and ten varieties of owls at either the subordinate species level

(e.g., ‘‘great blue crown heron,” ‘‘eastern screech owl’’) or the family level

of abstraction (‘‘wading bird,” ‘‘owl’’). During training, the amount of visual

exposure was such that participants received an equal number of learning

trials for wading birds and owls; the only difference was that one family of

birds was categorized at the species level (e.g., “green heron”) and the other

birds at the family level (e.g., “owl”). Pre- and post-training performance

was measured in a same or different discrimination task in which participants

judged whether pairs of bird stimuli belonged to the same or different

species.

The key finding was that participants trained in species-level discrimination

conditions recognized trained and novel exemplars learned at the species level,

but no transfer was found of exemplars learned at the family level. Thus,

perceptual categorization, not perceptual exposure or experience per se, is

important for the development and generalization of visual expertise. The

importance of subordinate labeling in expertise training has been replicated

for learning geometric objects (Wong et al., 2009), cars (Scott et al., 2008), birds

(Scott et al., 2006), and other-race faces (Lebrecht et al., 2009; Tanaka & Pierce,

2009). In studies of real-world experts, the subordinate level terms are the

products of perceptual expertise indicating a downward shift in recognition.

In studies of laboratory-trained experts, subordinate level terms serve as the

linguistic “hooks” that orient the observer to a more specific level of visual

analysis that creates the downward shift (for an example of label-less subordin-

ate level learning, see Bukach et al., 2012).

The value of laboratory studies is that expert recognition can be “reversed

engineered,” such that predicted variables mediating perceptual expertise can

be isolated, controlled, and tested. However, a shortcoming of the perceptual

training approach is that lab experts do not possess the rich knowledge that real-

word experts bring to bear in their recognition. For example, the accomplished

birder knows that in a wooded forest habitat they are more likely to see certain

species of birds (e.g., flycatchers, tanagers, nuthatches) and this top-down

knowledge helps to constrain the range of options in object recognition. For

real-world experts, domain-specific semantic knowledge is essential in expert
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car recognition (Barton et al., 2009; Dennett et al., 2012; McGugin et al., 2012)

and expert bird recognition (Johnson & Mervis, 1997; Tanaka & Taylor, 1991).

It is obvious that experts know more about the objects in their domain of

expertise than novices – after all, they are experts – but it is less obvious how

their conceptual knowledge might influence their perception of objects in their

domain of expertise. To address this question Boster and Johnson (1989) asked

sport fishing experts and novices to rate the relative similarity of different pairs

of sporting fish such as black sea bass, red snapper, and smooth puffer.

Novices who had little background knowledge of sporting fish based their

judgments on perceptual properties, such as the shape of fins (e.g., “both had

continuous fins across the top”) or body type (e.g., “both fish had long and

skinny bodies”). Experts, on the other hand, gave not only perceptual explan-

ations like these but also conceptual explanations for their similarity decisions,

such as “both fish are caught in the surf during the summertime.” Interestingly,

the similarity judgments of the fishing experts were more variable than the

judgments of novices. Having had extensive personal experience and know-

ledge of fish, the experts were more likely to be idiosyncratic in their similarity

decisions. For example, Expert A might know the specific details about

a particular species of fish that is less familiar to Expert B, whereas Expert

B might know fish species unfamiliar to Expert A. The differences in their

conceptual knowledge and experience contributed to the variability in their

similarity judgments.

Although a mechanic, a car salesperson, and a vintage collector might share

a passion for automobiles, their expertise of cars will be expressed in different

ways. The seasoned mechanic knows how to change a carburetor or replace

a fan belt, the salesperson knows the features and prices of the latest makes and

models of cars, and the vintage car buff knows about the historical facts of

classic automobiles. Thus, the same object category recruits different varieties

of perceptual and functional knowledge depending on the specialty of the expert

and the task demands required for their expertise.

To demonstrate this point, Medin et al. (1997) examined the category know-

ledge of three types of tree experts: taxonomists, landscape workers, and park

maintenance personnel. They found that taxonomists and maintenance workers

identified different perceptual properties of trees, whereas landscape workers

differed from the other two types of experts with respect to the functional

properties associated with trees. Although all three types of expertise required

specialized knowledge of trees, the kind of knowledge needed to fulfill the

pragmatics of that expertise differed across the groups. Despite sharing the same

domain (i.e., trees or fish), there are considerable group differences in their

knowledge of the domain and substantial intragroup differences depending on
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the experiences of the experts. Collectively, these studies indicate that not all

experts are created alike – that even within an expert domain there is much

diversity. How a perceptual expert “sees” an object in their domain of expertise

will depend on the kind of knowledge that they possess about the objects and the

goal of their interactions with the objects.

6 Cognitive Mechanisms: Attention, Encoding, and Short-Term
Memory

Imagine this scenario. You and your friend are out shopping at the local mall on

a busy weekend. The parking garage is packed with cars, but you manage to find

a spot. At the end of your shopping excursion, you return to the parking garage

only to realize that you forgot exactly where you parked your car. Sadly, as you

stare out at the sea of cars, you realize that your compact-sized, Japanese

automobile resembles almost every other vehicle in the lot. Fortunately, your

friend, a car salesperson, happens to be familiar with the particular make,

model, and year of your vehicle. Your friend makes a quick scan of the parking

garage and immediately spots your car parked in a nearby stall.

Visual Search. Scenes are visually rich stimuli containing a multitude of objects

broadly distributed across the visual field, with each object varying in its size,

shape, and color. To locate a particular object in a scene, the visual system

cannot simultaneously attend to all objects but must examine each object

individually, one at a time. An important question is whether experience and

familiarity with the objects sought can influence the speed at which they can be

found in a visual search.

To address this issue, Hershler and Hochstein (2009) asked car and bird

experts to identify a target car or bird object in a visual array containing

a variety of objects such as chairs, balls, shoes, and toys. In this visual search

task, they found that experts were reliably faster to detect objects in their

domain of expertise than objects outside their expert domain. That is, bird

experts were faster to find bird targets than car targets, whereas car experts

showed the opposite search advantage for car targets over bird targets. Because

both experts were given the same test arrays, their faster reaction times were not

due to any features of the stimuli but to the prior knowledge and familiarity with

objects in their domain of expertise.

To better understand the expert’s search advantage, Hershler and Hochstein

(2009) created a salience map in which the reaction times were displayed as

a function of their spatial location in the visual array. For example, the upper

left-hand corner of the saliency map represented the reaction time of a target

item when it appeared in the upper left-hand corner of the search array. When
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participants searched for objects close to the fixation point, not surprisingly,

their search times were fast and accurate. Critically, when targets were located

in the periphery, the experts showed only a slight increase in their detection

times for objects in their domain of expertise as shown in red in Figure 4.

However, when participants were searching for objects outside their domain of

expertise, detection time increased as the target locations moved into the

periphery as shown in blue in Figure 4. Based on this evidence, the authors

suggested that, for objects in their domain of expertise, experts formed tem-

plates that helped guide the search processes across a broader spatial area,

efficiently separating the potential target images from the nontarget images.

If object templates can facilitate performance when they are the targets of

a visual search, would these same templates hinder performance when objects of

expertise are irrelevant distractors? To address this questionMcGugin et al. (2011)

recruited car experts and novices and asked them to search for target faces in an

array that contained distractor images of cars. For novices, the car distractors had

little effect on the pattern of their search behaviors compared to their search times

for control stimuli (i.e., photos of sofas). However, for the experts, there was an

interference effect where they were slower than novices to find the target faces

when they were shown among car distractors. Interestingly, the magnitude of the

interference effect correlated with independent measures of car expertise such that

the best experts tended to show the strongest interference effects.

The visual search studies suggest that the observer’s ability to detect objects

in a complex scene can be fine-tuned by experience and top-down knowledge.

On the positive side, experts are faster to locate objects in their domain of

expertise across a broader region of the search space using object templates

(Hershler & Hochstein, 2009). However, on the negative side, experts are

distracted by the presence of expert objects even when the images are not

relevant to the search task at hand. Thus, it is plausible that the expert object

templates that facilitate performance when they are the targets of visual search

are the same templates that automatically draw attention and impair perform-

ance when they are the nontarget distractors of visual search.

Visual Encoding. As a defining characteristic of their perceptual expertise, experts

are faster to make subordinate level categorizations of objects in their domain of

expertise than novices (Johnson & Mervis, 1997; Tanaka & Taylor, 1991).

However, because there are multiple steps in the recognition processes involving

perceptual encoding, categorization, decision-making, and motor response, the

source of the expert recognition advantage is not obvious. That is, experts may be

more efficient in extracting diagnostic information from a stimulus or they might

also be better at accessing the right subordinate level representation or even in
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executing a speeded motor response. Any or all of these factors would contribute

to an expert’s ability to classify an object at the subordinate level.

In an important study, Curby and Gauthier (2009) tested whether expertise

affects the visual encoding early in recognition. In their study, participants were

presented with a car stimulus for either 12, 47, 82, 118, 153, 235, 494, or

1000 ms followed by a second car stimulus. The participant’s task was to decide

whether the first and second car stimuli were the same or different models of

cars. For the “same” trials, the car stimuli belonged to the same category of car

type but could differ in superficial image properties, such as shading and

luminance. The investigators found that in exposure durations as brief as

48 ms the car experts performed above chance levels, indicating that the

influence of their top-down expertise knowledge was evident at this early

stage of perceptual processing. In contrast, car novices required 118 ms of

encoding time to achieve the same level of performance (see Figure 5). While

discrimination (d’) performance of both expert and novice groups improved at

a similar rate with increased exposure duration time, the peak asymptote for

experts was much higher than the level achieved by novices, indicating that,

despite the additional viewing time, novices lacked the perceptual knowledge to

make accurate discrimination judgments. These results indicate one source of

the expert’s recognition advantage occurs at the earliest stage of object recogni-

tion and involves the rapid encoding of diagnostic features of objects in the

domain of expertise.

Visual Short-Term Memory. Visual short-term memory (VSTM) is a temporary

memory buffer where a limited number of items can be stored to support an

ongoing cognitive task. On average, people can hold about three or four visual

items in their VSTM (Vogel et al., 2001). However, the capacity of VSTM is not

fixed and can vary with object complexity. Specially, it has been shown that

visually complex objects, such as shaded cubes, placed greater demands on

VSTM than simpler objects like letters and uniformly colored squares, reducing

its overall capacity (Alvarez & Cavanagh, 2004).

The capacity of VSTM is not rigidly fixed but can be influenced by the experi-

ences of the observer. Specifically, familiar objects require less processing than less

familiar objects. Faces are a good example of complex, but highly familiar objects.

Curby andGauthier (2009) demonstrated that people show a larger VSTMcapacity

for upright faces that is greater than the capacity for cars, watches, and inverted

faces. In a follow-up study, Curby et al. (2009) showed the capacity of VSTMwas

increased for highly familiar objects of expertise. They found that car experts

showed a larger VSTM capacity for cars compared to novices and, critically, the

expert advantage was eliminated when the car stimuli were inverted.
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Based on this evidence, they speculated that car expertise relies on holistic

processing and this process is disabled when the car stimuli are turned upside

down. According to object-based theories of VSTM capacity, holistic encoding

may allow experts to integrate the multiple features of a car into the unified

object representations, thereby reducing the memory load of VSTM (but, for an

alternative view, see Scolari et al., 2008).
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Figure 5 The sensitivity (d’) of car experts and car novices in making

“same/different” discrimination decisions and encoding

duration (Curby & Gauthier, 2010).
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As the foregoing studies demonstrate, real-world and laboratory-trained

experts are quick, accurate, and specific when identifying objects in their

domain of expertise. In terms of their cognitive behaviors, experts are faster

to find expert objects during a visual search (Hershler & Hochstein 2009), are

faster to recognize expert objects under brief exposure conditions (Curby &

Gauthier 2009), and have a greater VSTM memory capacity for objects of

expertise (Curby et al. 2009).

7 Face Recognition and the Holistic Hypothesis

Although the foregoing research studies characterize the cognitive behaviors of

a perceptual expert, they do not directly address the mental representations that

mediate these behaviors. That is, what is the nature of the representation that

drives the expert’s perceptual advantage in subordinate level recognition, visual

search, and short-term memory? In this section, we explore the diagnostic

information (e.g., color, spatial frequency, motion) that experts employ to

facilitate the very fast identifications in their domain of specialization. We

start by comparing the processes of object expertise to another type of expertise

that virtually all of us possess: our expertise with faces.

A common claim is that most people are face experts who can recognize

familiar faces, such as those of celebrities like Brad Pitt, Beyoncé, Meghan

Markle, and Taylor Swift, quickly, accurately, and at subordinate levels of

abstraction (Barragan-Jason et al., 2012). Indeed, face recognition constitutes

the most specific type of subordinate level recognition of individuation where

each face serves as its own unique category by being frequently identified with

a proper name label (e.g., Bob, Susan, Javon) (Tanaka, 2001). At the basic level,

all faces share a perceptual similarity, such that all faces possess the same

features (i.e., eyes, nose, mouth) placed in the same general configuration

(i.e., the eyes are above the nose, which is above the mouth). Therefore, one

face can only be individuated from another face by detecting relatively subtle

variations in the shape of its features and their configuration. Despite the

perceptual demands imposed by individuation, most people are “experts” in

face recognition and can recognize a familiar face accurately, quickly, and with

little cognitive effort.

What are the processes underlying our face recognition expertise? Given the

structural similarity of faces, it has been speculated that faces are recognized not

on the basis of a single feature but on the ensemble of facial features that are

fused together to form an integrated whole – an operation that has been referred

to as holistic processing. According to the holistic hypothesis, holistic process-

ing emerges when (1) the individuated objects are structurally similar to one
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another, (2) they require quick and accurate discrimination, and (3) the subjects

have sufficient experience to be sensitive to the structural properties that

individuate category members.

Most forms of perceptual expertise satisfy the requirements for holistic

processing. After years of experience and practice, experts have honed their

ability to quickly and accurately recognize objects in their domain of expertise

at subordinate levels of abstraction. Therefore, it seems reasonable to expect

that perceptual experts would demonstrate evidence of holistic processing when

recognizing objects in their domain of expertise. In the face recognition litera-

ture, three measures – the inversion task, the parts-and-wholes task, and the

composite task – have served as the benchmarks of testing holistic face pro-

cessing. In the expertise literature, these same tasks have been applied to assess

whether holistic processes are found in expert recognition.

The Inversion Test. While most objects are more difficult to identify when

turned upside down, faces seem to be disproportionately impaired by inversion

relative to the recognition of other objects – the face inversion effect (Yin,

1969). According to holistic accounts, when a face is inverted, holistic pro-

cesses are disrupted, forcing the observer to perceive the face not as an

integrated whole but in terms of its individual parts thereby impairing face

recognition (Rossion, 2008). A strength of the inversion manipulation is that the

visual properties of the face stimulus (e.g., luminance, contrast, spatial fre-

quency) are preserved in an upside-down face, yet people are slower and less

accurate to identify an inverted face, suggesting that inversion selectively

disrupts a face-specific process.

To probe for an expert inversion effect, Diamond and Carey (1986) recruited

expert dog judges and tested their recognition for breeds of dogs presented in their

upright and inverted orientations. Critically, a reliable inversion effect was obtained

when the judges made recognition judgments for canine breeds within their area of

specialization, but no inversion effect was found for the dog breeds that were

outside of their breed of specialization. Consistent with the holistic expertise

hypothesis, the authors speculated that the dog judges employed holistic processes

for individuating dogs by their breed of specialization and, consequently, recogni-

tion judgments were vulnerable to the effects of inversion. However, when identi-

fying breeds outside of their realm of expertise, they utilized a more analytic, or

piecemeal, strategy as evidenced by the lack of an inversion effect.

Since Diamond and Carey’s study, evidence for the holistic expertise hypoth-

esis has been mixed. The majority of expertise studies have shown that inver-

sion does not necessarily affect the accuracy of expert recognition, but it can

slow the speed of recognition, as was the case for handwriting (Bruyer &
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Crispeels, 1992), fingerprints (Busey & Vanderkolk, 2005), Greebles (Gauthier

et al. 1998; Gauthier & Tarr, 1997b) and cars and birds (Gauthier et al., 2000;

B. Rossion & Curran, 2010). That recognition can be slowed by inversion

indicates that while access to holistic processes may be impeded by inversion,

it is not completely abolished.

In an attempt to replicate the original Diamond and Carey (1986) results,

Robbins and McKone (2007) tested Labrador dog judges and breeders for their

recognition of faces and dogs presented in their upright and inverted orientations.

Contrary to the Diamond and Carey study, they found that the inversion effect for

the dog experts was comparable (upright: 70 percent versus inverted: 62 percent)

to the inversion effect obtained for the age-matched novices (upright: 64 percent

versus inverted: 60 percent). Moreover, the magnitude of the dog inversion effect

for the experts was smaller (8 percent) than that inversion effect obtained for faces

(17 percent). Because the inversion effect increased only slightly with experience

and did not approach the size of the face inversion effect, they concluded that

expert recognition does recruit holistic processes.

However, the Robbins and McKone study fell short of providing a definite

test of the holistic expertise hypothesis. Specifically, the expert breeders and

judges selected for their study specialized in British-type Labradors, but more

than half (thirty-eight of the sixty) of the stimuli depicted the visually dissimilar

American-type Labradors. Thus, the mismatch between test stimuli used in the

experiment and the domain of expertise of the participants might explain why

the expert participants performed no better than the novice participants in the

recognition of upright dogs (Robbins & McKone, 2007).

A variant of the holistic expertise hypothesis was recently evaluated by

Campbell and Tanaka (2018) in which they tested the recognition abilities of

budgerigar breeders. Budgerigar breeders are passionate hobbyists who keep

between 50 and 500 birds in their aviaries. Although the birds are not typically

named, the breeders claim that they are able to individuate each bird with

respect to its age, sex, personality characteristics, and genetic lineage. Similar

to faces, birds share basic features and markings that appear in similar spatial

arrangements (see Figure 7). Thus, given the number of birds raised by the

breeders and their ability to individuate their birds, budgerigar expertise pro-

vides the ideal domain for testing the claims of the holistic expertise hypothesis.

Campbell and Tanaka (2018) tested budgerigar experts and age-matched

novices for their recognition of upright and inverted budgerigars and faces.

They found that novices showed a robust inversion effect for faces but their

overall recognition of budgerigars was poor. Further, there was no difference in

recognition between upright and inverted budgerigars. Budgerigar experts did

not differ from novices on the face recognition task but were superior to the
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novices in their recognition of budgerigars, thereby validating their expertise.

Critically, the experts demonstrated a robust inversion effect for budgerigars

and the magnitude of the inversion effect was comparable for faces.

Although the expert inversion results are consistent with the holistic expertise

hypothesis, a limitation of the inversion paradigm is that the source of the

inversion effect is not specified. Whereas inversion disproportionately disrupts

the recognition of faces and objects of expertise, it is not clear whether holistic

processes are selectively impaired by misorientation. In the face recognition

literature, the composite task and the parts-and-wholes task are designed to

directly test for the presence and absence of holistic processing.

Composite Task. In face processing, a compelling demonstration of holistic face

processing is the face composite task (Young et al., 1987). In this paradigm,

a composite face stimulus is created by aligning the top half of one face with the

bottom half of another (as shown in Figure 6). This manipulation produces the

impression of a new composite face identity with neither the top half nor

the bottom half of the face resembling the original identity of the person

depicted. In the face composite test, participants are instructed to attend to

Inversion Task

Upright Inverted

Composite Task

Aligned

Misaligned

Parts-and-Wholes Task

Study Face
Whole Face Condition

Isolated Part Condition

(a)

(b)

(c)

Figure 6 Three tests of holistic processing: (a) inversion task – participants are

tested for their recognition of upright and inverted faces; (b) composite task –

participants are instructed to attend to the top half and ignore the bottom half as

indicated by the arrow cue; (c) parts-and-wholes task – participants learn

a study face and are then asked to select the correct mouth from the study face.
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and identify the person according to the top (or bottom) half of the face and to

ignore information in the other half of the face (see Figure 8). However, owing

to holistic interference, participants find it difficult to decouple the two face

halves from each other, as reflected in their slower response times and lower

accuracy rates. Critically, when the face halves are misaligned or the composite

face is inverted, the holistic interference effect is attenuated (Young et al.,

1987), thereby disrupting the holistic illusion (Rossion, 2013).

Are experts susceptible to holistic interference? Gauthier et al. (2003) inves-

tigated interference in the expert holistic processing of cars and faces. In their

study, car experts and car novices were asked to make same/different judgments

Figure 7 Illustration of the common markings of the exhibition

budgerigar (Campbell & Tanaka, 2018).
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based on the bottom halves of alternating composite face and car images. Their

results showed that the magnitude of the holistic car interference effect was

correlated with self-reports; the more experienced car experts exhibited

a stronger inference effect. Interestingly, the amount of interference for cars

was correlated with the magnitude of interferences for faces. One interpretation

of this finding was that the mechanism used for expert recognition must be

similar to the mechanism applied for faces.

Composite tasks have since been used to demonstrate interference in other

expert domains involving holistic perception, such as fingerprints (Busey &

Vanderkolk, 2005), X-rays (Bilalić et al., 2014), musical notation (Wong &

Gauthier, 2010), and chess boards (Bilalić et al., 2011). Composite interference

effects have been demonstrated during the perception of English words (Wong

et al., 2011), Portuguese words (Ventura et al., 2017; Ventura et al., 2020), and

Chinese characters (Wong et al., 2011), suggesting holistic processes are used in

reading.

While holistic processes have been shown in real-world experts, training studies

have also demonstrated that holistic processing emerges as a consequence of

training with artificial objects (Greebles: Gauthier & Tarr, 1997; Ziggerins: Wong

Figure 8 Two-back interleaved part-matching task designed to measure holistic

processing for cars and for faces (Gauthier et al., 2003). Composite faces and

cars were interleaved in either (a) an intact (familiar) or (b) transformed (tops

inverted) configuration (Gauthier et al. 2003).
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et al., 2009). One study trained two groups of participants to rapidly classify thirty-

six artificial objects (Ziggerins) either at the subordinate level of the name or at the

basic family level (see Figure 9). Behaviorally, the participants who learned to

individuate Ziggerin showed the classic downward shift in producing speeded

subordinate level classifications and these participants exhibited an increase in

their holistic processing on the composite task after learning. In contrast, the

basic level participants showed an improvement in their basic level categorizations

and displayed no changes in their holistic processing. The Ziggerin results show

that holistic processes are recruited when participants are trained to differentiate

structurally similar objects at subordinate levels of categorization but not when

those same objects are learned at the basic level. Hence, it is not the quantity of

perceptual experience that promotes holistic processing but the quality of the

experience as dictated by the task demands of expertise. In the Wong et al.

(2009) study, both groups of participants were exposed to the Ziggerin objects an

equal number of times, but only the subordinate group showed evidence of holistic

processing.

Parts-and-Wholes Task. In the face recognition field, the parts-and-wholes task

has been employed to directly measure the holistic representation of faces. In

this paradigm, participants learn a series of faces (e.g., Joe, Bob, Fred) and then

their memory for specific parts is tested. Memory for the parts is tested either

when shown in isolation or when shown in the context of the whole face. In the

whole face test condition, the target and foil faces are identical with the

exception of the critical part under examination. As shown in the example in

Figure 3, recognition for Brad Pitt’s nose is tested in a whole face in which the

eyes and mouth are kept constant in the target and foil faces. Critically, then, in

Figure 9 Examples of Ziggerin objects shown in their object

families (Wong et al., 2009).
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the whole face and isolate part test conditions, the target and foil items only

differ with respect to the critical feature under testing. However, if memory for

the individual features of a face is integrated into the whole face representation,

recognition of the face part should be better when presented in the whole face

context than when tested in isolation. Consistent with this prediction, part

recognition was superior when presented in the context of the whole face

(Tanaka & Farah, 1993). However, no evidence of holistic recognition was

found when the studied and test stimuli were scrambled faces, non-face stimuli

(houses), or inverted faces. In these cases, the recognition of the individual part

did not benefit from the context of the whole stimulus forcing an analytic

approach to encoding (Tanaka & Farah, 1993). Based on this evidence, it has

been argued that faces are represented as unified, non-decomposable forms

where part and configural information are integrated as a holistic face represen-

tation (see also Donnelly & Davidoff, 1999).

The holistic expertise account predicts a similar whole object advantage

when experts are identifying parts of objects from their domain of expertise.

In an unpublished study, Tanaka et al. (1996) tested the holistic recognition of

three types of real-world experts: cell biologists, car buffs, and Rottweiler dog

breeders.

Expert participants had at least five years’ experience and were currently

active in their field of specialization. Biological expertise was chosen as

a suitable comparison domain because biological cells, similar to faces, have

identifiable parts (i.e., nucleus, nucleus, mitochondria) that can be manipulated

in the frontal plane. Although the configuration of the cell parts varies, biology

experts learn to differentiate different cell types based on the shape and spatial

differences between the parts. Car expertise was a plausible test domain given

that automobiles have discernible features (e.g., headlights, grill, bumper) that

are arranged in a prototypical configuration. Finally, experts who specialize in

the breeding and judging of Rottweiler dogs were also investigated for the parts-

and-wholes study. However, in contrast to previous studies where experts were

tested for their recognition of dogs shown in profile (Diamond & Carey, 1986;

Robbins &McKone, 2007), Tanaka and colleagues measured the ability of their

experts to recognize the frontal facial features of the dogs. It is typical for dog

experts to be sensitive to the facial characteristics of their dogs because facial

composition is taken into account when judging the overall quality of the

animal. In this study, experts were asked to identify parts from their domain

expertise displayed in isolation or in the whole expert object using the parts-and

-wholes task.

Surprisingly, all three kinds of experts showed no evidence of holistic pro-

cessing in their respective domains of expertise relative to the novices. Both

29The Expertise of Perception

https://doi.org/10.1017/9781108919616 Published online by Cambridge University Press

https://doi.org/10.1017/9781108919616


experts and novices showed evidence of holistic processing where recognition

was better when the part was tested in the whole object than when tested in

isolation. The absence indicates that holistic recognition is not necessarily

exclusive to expert recognition but can be applied in situations of nonexpert

recognition. In this study, it was informative that the cell, car, and dog experts

fared no better in their recognition of expert objects than novices. The lack of an

expert/novice difference shows that experimental stimuli in the parts-and-wholes

task failed to capture the critical qualities of perceptual expertise from these

domains. For the biologists, holistic processing might be less essential because

the configuration of parts contained within a cell vary in their spatial arrange-

ment, thereby inducing a more part-based strategy. To test car and dog expertise,

previous studies have depicted car (Gauthier et al., 2003) and dog (Diamond &

Carey, 1986) stimuli in full profile, whereas the car and dog stimuli used in the

parts-and-wholes task depicted only the frontal portions of the cars and dogs. It

is possible that stimuli displayed in these formats do not tap into the perceptual

skills necessary for the expertise in recognizing these types of objects.

According to the holistic hypothesis of expertise, holistic processing is required

for the rapid identification of expert objects at subordinate levels of abstraction.

Results from the inversion task show that, like face experts, real-world object

experts exhibit a robust inversion effect for objects of expertise (Busey &

Vanderkolk, 2005; Campbell & Tanaka, 2018; Chin et al. 2017; Diamond &

Carey, 1986; Gauthier et al., 1999; Rossion & Curran, 2010). Similarly, results

from the composite task reveal that experts exhibited holistic inference when they

are asked to selectively attend to one portion of an expert object while ignoring the

other (Gauthier et al., 2003). Compatible with holistic expertise view, participants

show evidence of holistic processing after subordinate level training, suggesting

that holistic processing facilitates the rapid recognition associated with perceptual

expertise (Gauthier & Tarr, 1997; Wong et al., 2009.) However, contrary to the

holistic expertise position, the cell, car, and dog experts failed to show a holistic

advantage on the parts-and-wholes task. Taken collectively, the empirical evidence

indicates that the fast, subordinate level recognition of perceptual expertise is

mediated by a degree of holistic processing. However, this is not to say that holistic

recognition is the only route to expertise. Other research discussed in the following

section has indicated that a blend of global and local strategies facilitate the

expert’s keen ability to recognize objects in their domain of specialization.

8 Global and Local Processing

In his classic field guide to birdwatching, the illustrator Roger Tory Peterson

employed two graphical techniques to highlight the types of information that are
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useful in bird identification. In the first technique, displayed birds in silhouettes

show the basic shape outlines of each taxonomic family level (Peterson, 1998).

As shown in Figure 10, birds can be discriminated at this level based solely on

their size and shape information, absent any internal features. At a finer grain of

categorization, Peterson used arrows to highlight the features that differentiate

similar species of birds or to show within-species developmental or sex differ-

ences. For example, the immature orchard oriole can be discriminated from its

adult version based on its black throat patch and Bullock’s oriole is identifiable

from other orioles according to its distinctive eye-ring. Peterson’s method

suggests that bird recognition requires the encoding of the external shape of

the bird as well as attending to visual features that distinguish birds at the

species level.

Perceptual expertise involves attending to the global shape outline of an

object as well as attending to its internal local details. When diagnosing

a radiological image, for example, the expert radiologist makes an initial scan

of the X-ray image to determine whether it is “cancerous” or “noncancerous”

(Kundel & Nodine, 1975; Swensson, 1980). This assessment can be accom-

plished very quickly in exposure times as brief as 250 ms (Evans et al., 2013).

Guided by general information in the initial scan, the radiologist then engages in

a more deliberate “search and find” mode to localize the specific site of the

lesion and to assess its abnormality. In contrast to the global-to-local shift that

accompanies radiological expertise, the less experienced radiologist engages in

the slower and less accurate “search-to-find” mode (Krupinski & Jiang, 2008).

In this model, the detection and localization phases are distinct but interdepend-

ent operations where the global phase of detection constrains the search con-

ducted in the localization phase of identification.

However, Evans et al. (2013; 2016) offered an alternative account in which

they argued that the detection and localization stages involved in radiological

Figure 10 Families of common birds differentiated by silhouette.
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assessment are executed independently of one another. According to their

account, the initial scan signals information about the status of the image

(cancerous or noncancerous) but does not contain information about its specific

location if cancerous. To support this claim, Evans et al. (2013) presented expert

radiologists and novices with brief presentations of bilateral mammograms.

Half of the mammogram stimuli were normal images and the other half con-

tained a subtle mass and architectural distortion of varying sizes (10–48 mm). If

participants detected an abnormality in the image, they were asked to indicate

its location on a blank mammogram with a mouse click. Mouse clicks falling

within an area determined by the ratio of the lesion area and overall tissue area

were considered as correct responses.

The key finding was that the detection rates of expert radiologists were above

chance levels at the brief exposure duration of 500 ms; however, their localiza-

tion decisions were outside the boundaries of the lesion. According to Evans

et al. (2013), 500 ms was sufficient time to extract a “gist” signal about the

normality of the mammogram but not enough time to extract information about

its location (but see Carrigan et al., 2018). While experts might make expert

decisions in a “blink of an eye,” they might not be consciously aware of the

reasons for their decisions.

9 Diagnostic Features: Color and Spatial Frequency

In this section, we explore how the expert’s knowledge about the diagnostic

features of an object influences their ability to make fast, precise identifications

at fine levels of discrimination.

An essential requirement for perceptual expertise is knowing the diagnostic

features of an object; that is, what are the characteristics that differentiate one

object from another. The expert mushroom hunter is aware of the features that

differentiate a Macrolepiota rachodes mushroom from its close neighbor the

Macrolepiota procera mushroom, and the veteran trainspotter can visually

distinguish a General Electric Dash 8-40 C from a General Electric C44-9 W

with ease. However, the diagnostic features required for expert recognition are

not always evident. What is considered a perceptual feature to one person is not

necessarily regarded as one by another.

In a study by Biederman and Shiffrar (1987), novice participants were asked

to categorize pictures of one-day-old chicks as male or female. Because the

diagnostic cues necessary for this category task were not obvious, participants

performed at chance levels even when provided with feedback. However, after

the participants were told the location and shape of the critical feature, accuracy

improved to expert levels. The chicken sexing findings highlight the distinction
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between what the casual observer sees as a perceptual feature and what the

expert views as a diagnostic feature. Although an observer might be aware of an

object’s perceptual features, they might not be aware of its diagnostic utility

with respect to identification and categorization (Schyns, 1998; Schyns &

Rodet, 1997).

However, knowing the diagnostic features of a category is no guarantee that it

will improve diagnostic performance. For example, in dermatology training,

students are taught the diagnostic features of skin cancer using the ABCDE

rules representing five salient features of a lesion regarding its asymmetrical

shape (A), irregular border (B), variegated color (C), a size that is greater than

6 mm in diameter (D), and evolving appearance (E). If a lesion meets ABCDE

diagnostic criteria it is suspicious and the patient is referred to a dermatologist

for further evaluation.

Unfortunately, training programs based on the ABCDE diagnostic guide-

lines have not been successful with medical practitioners whether they are

nurses (Oliveria et al., 2001), medical students (Aldridge et al., 2012), or

primary care physicians (Chen et al., 2001). In the case of melanoma,

adopting a featural approach to diagnosis is problematic for two reasons.

First, participants (e.g., primary care physicians, laypersons) might not have

the necessary diagnostic skill to detect the presence of a diagnostic feature or

might have a tendency to misclassify a noncancerous lesion as melanoma.

Second, melanoma and benign lesions represent “fuzzy” categories whose

features are not exclusive and ruled-based but more probabilistic and over-

lapping (Ashby & O’Brien, 2005). Fuzzy categories are acquired best when

learners have extensive experience classifying a broad range of category

examples and are provided with feedback on their category decisions

(Ashby & Ell, 2001; Roads et al., 2018; Xu et al., 2016).

Color

In vision, color plays a critical role in the early stages and the later stages of

object processing. In the early stages, color helps to segment the object from its

background information and to delineate the internal part features of the object

(Gegenfurtner & Rieger, 2000). In the later stages, color knowledge is inte-

grated into the object representation. There are stronger color associations for

some objects than others. For example, apples are red, bananas are yellow, and

alligators are green. For other objects, especially human crafted ones, color

assignments seem less systematic and more arbitrary where a car can be blue or

red or a hat can be green or yellow. In object recognition research, objects with

strong color associations are said to be “high” in color diagnosticity, whereas
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objects that are either weakly associated with color or lack color associations are

regarded as “low” in color diagnosticity (Tanaka & Presnell, 1999).

Although early models of object processing have minimized the contribu-

tions of color (and texture) to recognition (Biederman & Ju, 1988), subsequent

studies have shown that color affects object recognition across different tasks

such as naming and category verification (Bramão et al., 2011; Martinez-

Cuitino & Vivas, 2019; Rossion & Pourtois, 2004). Color is also influenced

by object category (natural versus human-made) (Nagai & Yokosawa, 2003),

provides a valuable cue under suboptimal viewing conditions (Tanaka &

Presnell, 1999; Wurm et al., 1993), and influences our perceptions in other

sense modalities (Spence et al., 2010). Thus, for things that we recognize in the

world, color matters.

Is color important in expert recognition? The domain of birdwatching seems

ideally suited to explore this question. As objects of recognition, the color

provides useful clues to the identities of birds. Veteran birdwatchers know

that birds can vary in color depending on the time of year and the age and

gender of the bird. Bird identification requires quick and accurate recognition of

birds that are often structurally similar in their global shape and, therefore, color

would be a valuable secondary source of information to aid in their discrimin-

ations. As an indication of their color knowledge, experienced birdwatchers

were more likely than novices to list color attributes that describe birds at the

subordinate level, indicating that color knowledge is employed in feature listing

tasks (Tanaka & Taylor, 1991).

A 2014 study tested the role of color in veteran birdwatchers and novices

(Hagen et al., 2014). In the experiment, bird experts and novices were asked

to recognize familiar birds shown in their congruent color, an incongruent

color, or grayscale at either the subordinate family level (e.g., hummingbird,

woodpecker, sparrow) or the species level (e.g., Tennessee warbler,

Wilson’s warbler). Both bird experts and bird novices demonstrated

a congruency effect in which the congruently colored birds were recognized

faster than incongruently colored birds (see Figure 11). Interestingly,

response time distribution analysis revealed color effects were observed at

different times for the two groups. For the novices, color effects were found

at the slower reaction times, suggesting that color knowledge was accessed

later in the recognition process. In contrast, the experts demonstrated an

advantage for congruent colored birds at their fastest responses and this

advantage was maintained across all response intervals. These results sug-

gest that the experts apply their color knowledge quickly and automatically,

whereas color knowledge is accessed more slowly and more deliberately by

novices.
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To test the functional role of color in subordinate level expertise learning,

Devillez et al. (2019) taught participants to categorize finches or warblers at the

subordinate species level and at the more general family level. Training images

were presented in their natural colors across six sessions. Before training, any

color helped performance, but color congruence effects (congruent > incongru-

ent) only emerged after subordinate level training and congruency effects were

maintained, even when tested a week later.

These results complement the findings with real-world bird experts showing

that novices integrate color information into their object representations during
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Figure 11 The effects of color on object recognition: (a) common birds shown

in their congruent colors, grayscale, and incongruent colors; (b) artificial stimuli

(Sheinbugs) shown in congruent colors and grayscale (Hagen et al., 2014).
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the acquisition of subordinate level concepts. An overall color effect was found

in a training study with artificial objects called Sheinbugs. Here, participants

learned one family of full-color, artificial objects at the subordinate (species)

level and another full-color family at the basic (family) level (Jones et al., 2018).

After learning, their subordinate and basic level recognition was tested with

color and grayscale images. A color advantage was observed in both the basic

level and the subordinate learning conditions, suggesting that color can be

a useful diagnostic cue at the multiple levels of categorization.

Spatial Frequency

Spatial frequency (SF) analysis is a useful technique for separating the global

shape and fine-grain information in an image. As shown in Figure 12, fine

variations in luminance contained in high spatial frequencies (HSFs) reflect the

internal details and edges of an object. By comparison, coarser luminance

variations captured by low spatial frequencies (LSFs) represent an object’s

global form (Morrison & Schyns, 2001). In visual processing, different ranges

of the SF spectrum have been shown to be critical for the recognition of letters

(Solomon & Pelli, 1994), line drawings and geometric silhouettes (3 to 6 cycles

per object: Braje et al., 1995), and faces (8 to 16 cycles per face: Costen et al.,

1994, 1996). In object categorization, subordinate level classification of non-

face objects relies more heavily on HSFs (~16 cycles per object) relative to

basic level classification of the same objects (Collin & McMullen, 2005; Harel

& Bentin, 2009).
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Figure 12 The effects of spatial frequency (SF) on object recognition. Common

birds whose spatial frequencies contain 2–4 cycles per image (CPI), 4–8 CPI, 8–

16 CPI, 16–32 CPI, 32–64 CPI, and all spatial frequencies (Hagen et al. 2016).
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To test the influence of SF on expertise, expert birdwatchers and novices were

asked to identify common birds (e.g., robin, cardinal) that were bandpass

filtered to isolated specific SF ranges and masked with the bird’s contour

(Hagen et al., 2016). This combined manipulation preserved the bird’s global

form while systematically degrading its internal feature information (see

Figure 12). Consistent with previous work (Hagen et al., 2014; Tanaka &

Taylor, 1991), bird experts were more accurate and faster at recognizing birds

at the family level than novices. Experts and novices recognized the images best

when presented in the mid-SF range (8–16 cycles per image) than the LSF range

(<8 cycles per image) and HSF range (>16 cycles per image). The reaction time

patterns showed that the experts, but not the novices, utilized the mid-range SF

information to facilitate their fast recognition times.

In a training study with artificial objects, it was also shown that images

containing information in the 8–16 cycles per image range produced the best

results for the recognition of subordinate level objects (Jones et al., 2018).

Interestingly, the mid-range frequencies (i.e., 8–16 cycles per image; e.g.,

Costen et al., 1994, 1996) have been shown to be the optimum SF range in

face recognition. It has been claimed that mid-range SF are optimal for high-

lighting the details of the internal features of an object while conveying con-

figural information (Goffaux et al., 2005), information that is vital for face

recognition and for expert recognition.

10 Neural Substrates: EEGs and the N170 Component

We have argued that the behavioral benchmark of perceptual expertise is

a downward shift in recognition where the expert is as quick and as accurate

to recognize objects in their domain of expertise at the subordinate levels as

they are to recognize objects at the basic level. The expertise research shows

that the preferred level of human object recognition is not fixed but is

malleable, shaped by the observer’s experience and the demands of their

environment. The behavioral evidence suggests that differences observed

between experts and novices should be reflected in differences in their neural

processes.

In this section, we examine group differences in the brain activity of extant

experts and novices as well as trace changes in brain activity as a novice

becomes an expert. First, we examine EEG studies that record the temporal

dynamics of perceptual expertise at the millisecond-by-millisecond timescale.

Next, we review the functional magnetic resonance imaging (fMRI) studies that

compare the metabolic brain activity of experts to novices in neural structures

implicated in expert processes. Collectively, the electrophysiological and
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neuroimaging methodologies provide a window into the brain processes medi-

ating the “when” and “where” of perceptual expertise.

EEG: The Temporal Dynamics of Perceptual Expertise

Electroencephalography (EEG) is a neuroscientific method in which electrical

activity from the brain is recorded noninvasively by electrodes placed on the

scalp of the participant’s head. In event-related potential responses (ERPs), this

electrophysiological activity is time-locked to the onset of an external stimulus

such as a sound or picture. While a single ERP trial is inherently noisy due to the

weak brain signals and recording artifacts, when many stimulus trials are

averaged together, prototypical brain wave patterns (i.e., ERP components)

emerge from the brain data that reflect specific cognitive processes (Luck, 2014).

One such component is the face N170. Research has shown that when partici-

pants view faces these stimuli elicit an early negative ERP component in the right

temporal electrode channels approximately 170 ms after the onset of the face

stimulus. The magnitude of the N170 component is significantly larger in

response to faces than other natural and human-made objects like cars, dogs, or

flowers (for a comprehensive review, see Rossion & Jacques, 2011). Thus,

relatively early on in neural processing, the brain activity elicited by faces is

differentiated from the brain activity elicited from non-face objects. Importantly,

the privileged processing of faces cannot be attributed to its unique low-level

properties (e.g., SF, contrast, luminance) because when face stimuli are turned

upside down the N170 component is significantly reduced or delayed.

A long-standing question in the ERP face processing literature is whether the

enhanced N170 potential is specific to faces or whether this component gener-

alizes to other objects of expertise. To investigate this question, Tanaka and

Curran (2001) monitored bird and dog experts while they categorized images of

common birds and dogs. In their design, participants served as their own

controls in that they were expected to perform as experts when categorizing

objects in their domain of expertise but were expected to respond like novices

when objects were outside of their domain. According to the face-specific

hypothesis, if the enhanced N170 is unique to faces, then expertise would be

expected to have little influence on this early ERP component. In contrast, if the

N170 can be modulated by experience, the expertise hypothesis predicts that

experts demonstrate an enhanced N170 component but only when viewing

objects from their domain.

Consistent with the expertise hypothesis, experts showed a greater N170

component when viewing expert objects within their domain of expertise and

a reduced N170 when viewing objects outside of their domain of expertise (see

38 Perception

https://doi.org/10.1017/9781108919616 Published online by Cambridge University Press

https://doi.org/10.1017/9781108919616


Figure 13). Because the bird experts demonstrated a larger N170 component to

bird stimuli and dog experts demonstrated a larger N170 component for dog

stimuli, the N170 expertise effect cannot be attributed to properties of stimuli

but to the experience and abilities of the observer. The Expert N170 has been

demonstrated in training studies where participants were trained to individuate

artificial objects, such as “blobs” (Curran et al., 2002), Greebles (Rossion et al.,

2002; Rossion et al., 2004), Japanese characters (Maurer et al., 2008), and

Chinese characters (Fan et al., 2015).

The Tanaka and Curran (2001) results suggest that the enhanced N170

component reflects a domain-general process of expert recognition rather than

a process that is specific to face recognition. What is not clear is whether the

Expert N170 uses a holistic process for face recognition. Measuring the ERPs of

fingerprint experts is the ideal test for addressing this question because they

identify individual fingerprints based on their characteristic ridge patterns,

Figure 13 The EEG results of bird and dog experts showing the N170 effect:

(a) wave plots of the composite N170 channels for bird experts (left) and dog

experts (right) – for each group, event-related potentials (ERPs) are

plotted separately for bird and dog stimuli; (b) topographic distribution

of the N170 expertise effect. The illustrations at the top show mean

voltages from 140 to 188 ms after picture onset separately for novice

and expert domains. The illustration at the bottom shows mean voltage

differences between expert and novice domains between 140 and 188 ms after

picture onset (Tanaka & Curran 2001).
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swirls, bifurcations, texture, and pore positions in a canonical upright orienta-

tion with the finger pointing up. If holistic processes are employed in expert

fingerprint identification, these processes should be impaired when fingerprints

are turned upside down.

To test this prediction, Busey and Vanderkolk (2005) recorded the ERPs of

fingerprint experts and novices while viewing faces and fingerprints. Both

experts and novices showed an increased and delayed N170 to inverted faces,

which was not surprising given that both groups were face experts with years of

experience in recognizing faces. Despite this, the brain activity of the expert and

novice groups was very different when presented with upright and inverted
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Figure 14 Recognition of upright and inverted faces and fingerprints

by experts and novices: (a) examples of upright and inverted fingerprint and

face stimuli; (b) the ERP waveforms of experts to upright and inverted

fingerprints and faces; (c) the ERPwaveforms of novices to upright and inverted

fingerprints and faces (Busey & Vanderkolk 2005).
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images of fingerprints. Whereas the novices showed no differences in their

ERPs to upright and inverted fingerprints, experts showed a delayed and greater

N170 response to inverted fingerprints compared to upright fingerprints (see

Figure 14). In other words, the fingerprint experts showed the same delayed and

increased N170 ERP activity to inverted fingerprints that people show to

inverted faces. Busey and Vanderkolk’s (2005) findings reinforce two important

points about the N170 component and perceptual expertise. First, it is a general

marker of perceptual expertise in specific category domains (e.g., faces, dogs,

birds, fingerprints); second, it is a neural index of holistic process that is

disrupted when objects of expertise (faces or fingerprints) are turned upside

down.

The ERP results indicate expert object recognition and face recognition

processes engage common cognitive processes and neural mechanisms

(Gauthier et al., 2000). Based on the interference effect, it is plausible that the

neural processes engaged in expert object recognition and face recognition

would compete with one another. To test the interference claim, Gauthier

et al. (2003) employed a composite task where car experts and novices were

presented with interleaved composites of faces and cars. Participants were

instructed to attend only to the bottom half of the objects and to decide whether

the bottom part matched that of the last object of the same category. In the

holistic condition, normal cars and normal faces were interspersed with normal

intact cars. In the non-holistic expert condition, normal cars were interspersed

with cars with their tops turned upside down. Behaviorally, car experts demon-

strated holistic interference where it was more difficult for experts to attend to

the bottom portion of the car when it formed a normally looking vehicle than

when the top was inverted.

With respect to the EEG data, the magnitude of the Expert N170 correlated

with behavioral measures of performance where the best car experts showed the

greatest reaction. Critically, when the cars were interleaved with faces, the face

N170 was significantly reduced, suggesting a competition effect between face

recognition and expert object recognition processes. That is, the neural

resources allocated for face recognition were depleted by the concurrent

demands imposed by expert car recognition.

As a direct test of face and expert object competition, one study presented

cars and faces to car experts and novices (Rossion et al., 2007). The images

were presented either simultaneously or with the face presentation trailing by

200 ms. When presented simultaneously, the magnitude of the N170 to faces

was significantly reduced, suggesting that car and face processes were

competing for the same cognitive resources. However, when the presentation

of the face was delayed by 200 ms, the magnitude of the face N170 was
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reinstated, suggesting that the slight delay was sufficient for the car pro-

cesses not to interfere with face processes. Thus, the collective ERP evi-

dence on the Expert N170 makes several key points: (1) the N170 is a not

a face selective component but is reserved for processing of all expert

objects; (2) the N170 is linked to holistic processing used in the recognition

of expert objects; (3) expert object and face recognition converge on

a common neural mechanism and compete for resources when processed

concurrently.

Whereas the occipital-temporal N170 ERP is responsive to the basic level

categories of expertise (e.g., faces, birds, cars), a later component, the N250, has

been associated with within-category, subordinate level distinctions, such as

recognition of celebrity or personally familiar faces (Huang et al., 2017;

Schweinberger et al., 2004; Tanaka et al., 2006; Wiese et al., 2018). To separate

the basic level N170 and the N250 components in expert object recognition,

Scott and colleagues recorded ERPs of the participants to images of wading

birds and owls. They then trained participants to classify wading birds and owls

at either the basic or the subordinate level (Scott et al., 2006). Critically, the

number of learning trials was equivalent in the two training conditions, such that

participants were presented with an equal number of owl and wading bird

images, and only differed with respect to the level at which the images were

classified. After six days of training, participants displayed an enhanced N170

response to the owl and wading bird images relative to their pre-training levels.

Interestingly, the magnitude of the N170 response was the same regardless of

whether participants learned to classify the birds at the basic or subordinate

levels. Hence, the N170 reflects the amount of category exposure or experience

to exemplars, irrespective of the level at which the exemplars were first cat-

egorized (Scott et al., 2008). As a perceptual component, the N170 reflects the

extensive visual experiences of experts who seek out every opportunity to view

objects in their domain of expertise.

In contrast to the N170, the N250 component was sensitive to the level of

category training. Participants demonstrated a greater N250 to the bird family

used in subordinate level training but not to the bird family used in basic level

training. The post-training N250 also generalized to new images of trained

species and new species within the subordinate level family. For example,

participants who learned to make subordinate level categorizations to owls

(e.g., great gray owls, burrowing owls, barred owls) demonstrated an N250

response to novel owl images not used in training and to owl images from

untrained but related species. The robustness of the N250 component suggests

that prior expert category knowledge provides the scaffolding for acquiring

new, related subordinate categories.
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As an alternative to the event-related methods in EEG, Rossion and

colleagues have applied the method known as fast periodic visual stimula-

tion (FPVS) to study the processes of object and face processing (Liu-

Shuang et al. 2014). FPVS employs an adaptation technique in which

a sequence of stimuli is rapidly presented at a fixed interval (i.e., base

stimulus) and, within the sequence, a stimulus from another category is

presented (i.e., oddball stimulus). The magnitude of the brain’s response

to the oddball stimulus provides an index of category discrimination.

Applying FPVS, Hagen and Tanaka (2019) recorded EEG activity while

bird experts and novices viewed a sequence of “base” bird images from the

same family (e.g., robin) or species (e.g., sparrow) presented at a frequency

of 6 Hz (i.e., 6 images per second). Every fifth stimulus was an “oddball”

image depicting a different family-level bird (e.g., warbler) or species-level

bird (chipping sparrow) occurring at a frequency of 1.2 Hz (i.e., about once

every 83 ms). As the comparison expertise category, face stimuli of the same

identity (e.g., Sam) were presented at 6 Hz base frequency and a face

stimulus of a different identity (e.g., Fred) was presented at 1.2 Hz oddball

frequency (see Figure 15a). The results showed that, for experts, the magni-

tude of the oddball response for species-level birds and faces was strongly

correlated. In contrast, the novices demonstrated a relatively weak correl-

ation between their response to species-level oddball and the face oddball

(see Figure 16b). These findings suggest that experts tap into the same neural

resources when making within-category discriminations for birds as they

use when making within-category discriminations for faces.

Whereas EEG methodologies are well suited to pinpoint the “when” of

perceptual expertise, fMRI provides a snapshot about the “where” of percep-

tual expertise, that is, identifying the brain structures that are differentially

engaged when experts view objects of expertise. In fMRI, it is assumed that

cognitive operations increase the hemodynamic activity, referred to as their

blood oxygen level–dependent (BOLD) response, in localized brain areas

(Glover, 2011). The BOLD response is captured by fMRI techniques at spatial

resolutions as precise as 0.8 cubic mm (Margalit et al., 2020). This fine-grain

spatial resolution comes at the cost of its temporal resolution where hemo-

dynamic response is delayed (one data point is normally obtained within

1–2 s), which is significantly slower than the millisecond timing afforded by

EEG methods.

In investigating perceptual expertise, researchers compare the BOLD

response of real-world experts and novices in order to understand how the

brains of experts might differ from the brains of novices. In a seminal study,

Gauthier and colleagues recruited bird and car experts and showed them images

43The Expertise of Perception

https://doi.org/10.1017/9781108919616 Published online by Cambridge University Press

https://doi.org/10.1017/9781108919616


of faces, familiar objects, cars, and birds while they were in an fMRI scanner. As

expected, when viewing faces, the experts exhibited heightened brain activation

in the right fusiform face area (FFA) relative to the activation elicited by object

stimuli (Gauthier et al., 1999). In the FFA, the experts exhibited a selective brain

response to objects in their domain of expertise that was stronger than the

response to control objects but was only slightly weaker than the response to

faces. The expertise response was category selective such that bird experts

showed an increased BOLD response to birds, whereas car experts exhibited

enhanced brain activity to cars. Gauthier and colleagues’ results provide com-

pelling evidence that FFA activation was driven by the participant’s area of
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Figure 15 The fast periodic visual stimulation (FPVS) methodology:

(a) bird or face images are presented at the base frequency of 6.0 Hz

(i.e., 6 times per second) – a different face or bird identity is presented at an

oddball frequency of 1.2 Hz (i.e., 1.2 times per second); (b) the magnitude

of the signal-to-noise (SNR) response to the oddball face and oddball

species bird was more strongly correlated for experts (triangles) than

novices (squares) (Hagen & Tanaka 2019).

44 Perception

https://doi.org/10.1017/9781108919616 Published online by Cambridge University Press

https://doi.org/10.1017/9781108919616


Figure 16 An image of Abraham Lincoln can be represented as a matrix of pixel values. Note the spatial contingencies in the image where

adjacent pixels are likely to share similar luminance values.
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expertise, not by a particular set of visual properties associated with the object

category, such as birds are more curvilinear and cars are more rectilinear in

shape.

A plausible explanation of the expertise results was that the experts

were responding to face-like properties contained in the expert stimuli. On

this view, bird experts were responding to the bird faces and car experts

were responding to the face-like configuration of symmetrical headlights

(“eyes”) and the grill (“mouth”) (Kanwisher, 2000). To test this possibil-

ity, Xu (2005) reduced the “facedness” characteristics of the stimuli by

showing side-view photographs of birds and cars to experts. Despite

reducing the face qualities of the stimuli, Xu found that experts demon-

strated a robust FFA activation to objects in their domain of expertise that

was correlated with perceptual expertise performance.

Subsequently, researchers have reported robust FFA activity in other

category domains such as medical diagnosis (Bilalić et al., 2016; Harley

et al., 2009) and chess (Bilalić et al., 2011). In developmental populations,

young children with EII and children on the autism spectrum exhibited

a heightened FFA response to objects in their specialty domains (Gomez

et al., 2019; Grelotti et al., 2005; James & James, 2013). In the Greeble

training study, participants showed a higher fMRI response in the right

FFA for matching upright “Greebles” than for inverted “Greebles”

(Gauthier & Tarr, 1997; Gauthier et al., 1998). Rather than being exclu-

sively dedicated to the recognition of faces, the expertise findings reveal

that FFA shows remarkable plasticity whose function can be used in

expert recognition.

Other neural structures besides the FFA have been implicated in per-

ceptual expertise. Harel et al. (2010) tested car experts and novices while

they were monitored for repeated images of cars or airplanes. In the high

expertise engagement condition, experts were asked to respond to cars and

to ignore the airplane stimuli. When the cars were the relevant category of

response, the experts exhibited enhanced BOLD activation in the FFA that

extended to the early visual areas and the parahippocampal place area

(PPA), showing that the effect of perceptual expertise was spread across

multiple brain areas. Other studies have shown that perceptual experience

recruits medial fusiform gyrus, lingual gyrus, and precuneus brain areas

(McGugin et al., 2012). However, in the “low expertise engagement”

condition, where experts were asked to respond to airplanes and to ignore

the car stimuli, brain activity in expertise-related brain regions (FFA, PPA,

early visual areas) was significantly reduced and similar to the activity

elicited by cars in novices. Hence, the expert brain areas are not
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automatically activated by the presence of expert stimuli but are engaged

when they are important to a given task.

In summary, perceptual expertise produces brain changes in the fusiform

gyrus of real-world experts (Gauthier et al. 2000), laboratory-trained experts

(Gauthier et al. 1999), and young children with special interests (Grelotti et al.

2005; Gomez et al. 2019; James & James 2013). Studies employing electro-

physiological methods have shown that the N170 and N250 brain components

that are commonly associated with face processing are activated during expert

recognition. Thus, similar to faces, objects of expertise can be distinguished

from nonexpert objects with respect to neural activity as measured by fMRI and

electrophysiological methods.

11 Convolutional Neural Networks: The New “Artificial” Expert

The February 2017 cover of the scientific journal Nature heralded the

coming of a new kind of perceptual expert – the convolutional neural

network (CNN). In a groundbreaking study, Esteva et al. (2017) taught

a CNN to distinguish varieties of common malignant carcinomas from

deadlier malignant melanomas. When tested with a novel set of lesions,

the CNN performed as well or better than board-certified dermatologists in

classifying both the common and serious types of melanomas. These results

raise provocative questions about the similarities and differences between

machine and human experts.

In this section, we begin by exploring the nuts and bolts of machine

learning by examining CNNs in terms of their architecture, learning algo-

rithms, inputs, and outputs. Next, we describe two applications of CNNs in

medical diagnosis and compare the performance of AI experts to the

performance of human medical experts. We then discuss the perceptual

information and algorithms that CNNs employ to make their object recog-

nition decisions and situations where these algorithms can lead to surpris-

ing and unpredictable errors. In the final section, we revisit the principles of

human perceptual expertise (e.g., downward shifts in recognition, training

effects, and diagnostic cues) as viewed through the lens of the CNN

artificial expert.

The Basic Architecture of Convolutional Neural Networks

In vision, the goal of the CNN is to categorize an input image at specific

levels of recognition (e.g., Abraham Lincoln, Bachman’s warbler, Doberman

pinscher). The to-be-recognized image is presented to the CNN as a matrix of

pixel values indicating its luminance and color. The pixel values in an image
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are not random but contain important information about the spatial contin-

gencies embedded in the image where neighboring pixels are likely to share

similar luminance values. For example, as shown in Figure 16, the outline of

Lincoln’s face is denoted by small luminance values that are spatially adja-

cent to one another. Inspired by Hubel and Wiesel’s work on the mammalian

visual system (Hubel & Wiesel 1962), artificial CNN is a large mathematical

model with parameters that learns from the regularities in this kind of image

data.

As shown in Figure 16, the input image is passed through a series of

convolutional and pooling layers containing nodes of information. Units on

each layer are connected by links whose connection strengths (i.e., weights)

are adjusted during learning. The convolutional layer takes advantage of the

spatial contingencies by applying filters, also known as “kernels,” that are

tuned to the primitive features in the image (e.g., oriented edges, colors)

similar to the V1 cells in the primary visual cortex. Filters can be visualized

like the light field holograms in Star Trek or a flashlight’s spotlight that

systematically scans the image from top to bottom building a feature map of

diagnostic information. The activation outputs from the convolutional layer

are relayed to the pooling layer that aggregates and reduces (i.e., downsam-

ples) the feature maps while retaining their diagnostic properties. The layers

of hidden units have local connectivity, meaning that each unit in a layer

receives inputs from a small number of units in the previous layer. As shown in

Figure 18b, CNNsmimic the properties of the primate visual systemwhere the

early analyses with simple oriented edge detectors are combined to form

higher-order features at the later layers similarly to shape-based objects

neurons found in the inferotemporal cortex (Kriegeskorte, 2015; Yamins

et al., 2014). The combined outputs are projected onto the fully connected

output layer. Recognition is a selection process by which the category node

with the highest output activation is chosen among the competing candidates

of objects. In supervised models, if the CNN makes a wrong recognition

decision (e.g., selecting Thomas Jefferson instead of George Washington),

the network receives feedback and adjusts the connection weights between the

nodes in proportion to the magnitude of the error signal, using an algorithm

known as “backpropagation.”

For CNNs, the 2012 ImageNet Large Scale Visual Recognition

Challenge was a watershed moment. The competition pitted the best neural

network models against one another in a test of object recognition. The

2012 competition was the debut of AlexNet, a new kind of CNN that

introduced groundbreaking advances in learning algorithms and allocation

of computing resources (Krizhevsky et al., 2012). For the contest, the
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models were trained with the ImageNet database containing more than

5 million high-resolution images from more than 22,000 object categories.

When validated with a novel set of images, AlexNet was able to recognize

objects that were often centered or embedded in complex backgrounds and

achieved a recognition rate of 85 percent, more than 10 percentage points

higher than its nearest competitor. The success of AlexNet attracted the

attention of researchers in AI and the public in general because it was one

of the first demonstrations of how CNNs can be applied to solve complex

problems in real-world object recognition.

Machines versus Humans: Two Case Studies of CNNs in Medical
Diagnosis

Nowhere has AI and deep learning networks made a greater impact than in

the field of medical diagnosis. Here, we examine two examples in medical
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Figure 17 A convolutional neural network (CNN): (a) a structural diagram of

a CNN showing its basic components of an input layer, convolutional layers,

pooling layers, classification units, and final output unit; (b) a functional

diagram of a CNN showing its early layers abstracting simple oriented edges

that are to form higher-order features that produce a whole object representation

that is classified at the output layer (Waldrop 2019).
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diagnosis, one in retinopathy and the other in breast cancer, that compare

the performance of CNNs against the perceptual judgments of human

experts.

Diabetic retinopathy is a complication of diabetes where high blood

pressure causes damage to the eye’s retina, resulting in impaired vision

and in extreme cases blindness. Retinopathy is characterized by

a proliferation of dark spots and neurovascular blood vessels in the retinal

digital image. Conventionally, skilled ophthalmologists manually inspect

retinal images of the patient and grade the photographs on a severity scale

ranging from mild to severe. An important question is whether the diag-

nostic process can be automated through the application of CNNs. Gulshan

et al. (2016) trained a CNN using a data set of 128,175 retinal images that

were graded by a panel of licensed ophthalmologists and ophthalmology

senior residents. Their results showed that CNNs achieved an accuracy

level of 99 percent and performed as well or better than trained ophthal-

mologists. The CNN performed remarkably well in measures of sensitivity

(the ability to correctly identify images with retinopathy) and specificity

(the ability to correctly reject images that do not have retinopathy), dem-

onstrating its diagnostic effectiveness.

Breast cancer is the most frequently diagnosed cancer among women,

and the World Health Organization (WHO) estimates that the number of

cancer cases expected in 2025 will be 19.3 million. One of the strongest

known risk factors of breast cancer is the relative amount of radio dense

tissue present in the mammogram X-ray, expressed as mammographic

density (MD) where women with high MD have a two- to sixfold

increased breast cancer risk compared to women with low MD (Wolfe,

1976). Fonseca et al. (2015) collected 1,157 mammogram images that were

blindly classified by seven radiologists with 5 to 25 years of experience

into 1 of 4 categories of breast density (1 = less dense, 4 = most dense).

A CNN was trained to classify a subset of the mammogram and its

performance was tested against the judgments of a subset of untrained

images. The CNN demonstrated an overall accuracy rate of 73 percent and

an average inter-rater reliability of 0.58, which compared favorably to

individual radiologist performance inter-rater reliability that ranged from

0.56 to 0.79.

In a more recent study (Ragab et al., 2019), a CNN was trained with

a database composed of more than 10,000 normal, benign, or malignant

mammograms. When tested with a novel set of images, the CNN was able

to classify the images as benign or cancerous at an accuracy rate of

94 percent. These examples illustrate the precision and accuracy of current
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CNNs whose performance will improve over time as more efficient algo-

rithms are developed and more extensive databases are made available.

CNN diagnoses have certain benefits over human expert decisions in

that they are internally reliable as well as convenient, efficient, and nonin-

vasive for the patient. While early detection of medical conditions through

AI should significantly improve patient outcomes, it is unlikely that CNNs

will completely replace human medical experts. If the everyday tasks of

radiologists can be performed faster and better by AI systems, this will

allow the medical expert the time to focus on solving complex clinical

problems (Chiwome et al., 2020; ESR 2019). Indeed, many medical prac-

titioners view CNNs not as replacements for diagnosticians but rather as

“decision support systems” (Campanella et al., 2020).

Different Routes to Recognition Taken by CNNs and Humans

As the foregoing examples demonstrate, CNNs perform as well or even

better than skilled perceptual experts in specialized domains, such as

mammography and retinopathy. Paradoxically, these same expert models

commit everyday recognition errors that even a young child wouldn’t

make. Szegedy et al. (2014) showed that minute perturbations of an

image – what are referred to as adversarial images – cause CNNs to

misclassify images in bizarre and unpredictable ways, such as mistaking

a school bus for an ostrich. Another manipulation that can cause problems

for CNNs is contrast reversal causes where the negative image of a car

leads to it being mislabeled as a ship (Hosseini et al., 2017). Thus, whereas

the human visual system demonstrates robust object recognition across

changes in the retinal input, CNNs can be vulnerable to even subtle

variations in the image.

The type of recognition errors committed by CNNs reveal how their algo-

rithms deviate from the strategies employed by humans. Geirhos et al. (2019)

trained a CNN to recognize images from the ImageNet database, a library

containing millions of manually annotated photographs and grouped into more

than 20,000 categories. The researchers then tested the CNNs and human

observers for their recognition of hybrid images that contained conflicting texture

and shape cues such as a cat-shaped image with the texture of an elephant shown

in Figure 18a. Whereas human observers recognize the hybrid images based on

their overall shape (e.g., cat), CNNs were biased toward its texture recognition

(e.g., elephant). Thus, it is possible for CNNs to identify objects based on unique

combinations of local texture patches rather than integrating the patches into an

object’s global shape (Brendel & Bethge, 2019; Geirhos et al., 2019).
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Figure 18 Probing the object recognition strategies of CNNs: (a) the texture of an elephant (left) is combined with a cat image (middle) to form

a hybrid image (right) (Geirhos et al., 2019); (b) minimal recognizable configurations (MIRCs) are small image patches that contain sufficient

diagnostic information to permit object recognition – whereas human recognition performance drops drastically when the MIRC is shifted or

blurred (percentage of correct human responses shown belowMIRCs), in contrast the recognition performance of CNNs shows only a slight decline

(Ullman et al., 2016); (c) misidentification of objects by CNNs (indicated in red box) – a hot air balloon is misidentified as a sports ball (left), a rake

is misidentified as a toothbrush (middle), and telephone insulators are misidentified as an airplane (right) (Eckstein et al., 2017).
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Ullman et al.(2016) explored the limits of image patches by constructing

what they referred to as “minimal recognizable configurations” (MIRCs). An

MIRC is a small patch of an image that contains the minimum amount of

information needed to be recognizable by most human observers. Presumably,

MIRCs contain enough information about the parts of an object and spatial

relations to enable recognition. Critically, slight perturbations in the size, loca-

tion, or resolution of the MIRC destroy these structural properties to the point

where recognition is no longer possible (as shown in Figure 18b). However,

these same perturbations have relatively weak effects on the recognition per-

formance of CNNs because the altered image preserves texture information that

is key to their recognition. Humans focused on specific, diagnostic part regions

that remained relatively consistent across viewpoints, whereas CNN models

selected features that are specific to a particular viewpoint (Karimi-Rouzbahani

et al., 2017).

In our everyday experience, objects are not recognized in isolation but

are part of a larger scene context. For example, when we walk into

a kitchen, we expect to see certain collections of objects, such as

a refrigerator, toaster, oven, or can openers, and these objects are situated

at predictable locations (e.g., toaster on the counter) and are of a certain

size (e.g., toasters are larger than can openers but smaller than refriger-

ators). For humans, scene knowledge facilitates recognition where we are

faster to identify objects when they appear in the expected contexts and at

expected locations (e.g., computer on an office desk) than when they are

found in an unexpected scene and location (e.g., computer in a bathtub)

(Biederman et al., 1982).

CNNs are less influenced by scene context and object locations than

humans and tend to focus on the local properties of the object. Eckstein

et al. (2017) showed that humans often miss targets that are in plain sight

when they are depicted at an unusual scale (e.g., a giant toothbrush) or

appear in an unexpected location (e.g., toothbrush on a rug). In contrast,

CNNs had few problems finding these target objects when depicted at an

unusual scale or location. At the same time, because CNNs lack scene

knowledge, they commit strange recognition errors (e.g., mistaking

a telephone for an airplane or misrecognizing a rake as a toothbrush)

that humans would seldom make (see Figure 18c) (Eckstein et al. 2017).

Despite the putative similarities between the human and CNNs

(Kriegeskorte, 2015; Kubilius et al., 2016), the foregoing studies illustrate

that humans and CNNs take different routes to recognition. Whereas the

human observers use prior knowledge to recognize objects and informa-

tion about their parts, configuration, and external shapes, CNNs recognize
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objects based on their image properties (e.g., texture, surface, edges) that

are linked to specific, local information contained in the training images.

Simulating Human Perceptual Expertise in CNNs

In this section, we speculate about how CNNs can be applied to explore the

computational principles behind perceptual expertise with respect to downward

shifts in recognition, training and recognition biases, and the identification of

diagnostic features.

Downward Shifts in Recognition. To facilitate their subordinate level

recognition, perceptual experts are attuned to subtle variations in visual

features that differentiate one subordinate level object from another

(Tanaka & Taylor, 1991). A bird expert, for example, knows that a hairy

woodpecker is distinguished from its close relative, the downy wood-

pecker, by its elongated and larger beak. To address the challenge of

fine-grain subordinate level categorizations, neural networks must have

knowledge about which part or region of the object is the most diagnostic

and then obtain a fine-grain feature learning from those regions that goes

beyond the basic level parts (Fu et al., 2017). One solution that is time-

and labor-intensive has been to recruit human annotators to identify and

label the object parts in the image (Deng et al., 2013). Some methods

allow the CNN to recursively identify and zoom in on discriminative

regions to learn about the object part at this finer grain of detail (Fu

et al., 2017). Another strategy first segments the figure object from its

background to align it with objects in similar poses and then identifies the

parts of the objects with similar poses to remap those regions back onto

the images (Krause et al., 2015). These models demonstrate that, with

additional human and machine interventions, CNNs can achieve the level

of subordinate recognition exhibited by human experts.

Experience and Training. Like human experts, CNNs can only learn to

recognize the object categories that they are exposed to during training

expertise. Depending on the makeup or size of the training set, outputs can

be contaminated with biased content (Gebru, 2019). For example,

Camilleri et al. (2019) tested a CNN and acutely demonstrated it had

racial, gender, and age bias in its predictions because the training images

gathered were primarily of celebrities, a category that is disproportion-

ately white, male, and more youthful looking than the general population.

Even with retraining they were only able to make incremental improve-

ments to correct this tendency once learned (Camilleri et al., 2019).
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Critical studies have shown that some CNNs are more likely to classify

criminal defendants who are black as more likely to reoffend than those

who are white (Angwin et al., 2016) and that many natural language

processing tools, having been trained using newspapers, exhibit societal

biases in their outputs, such as finishing the analogy “man is to computer

programmer as woman is to [x]” with “homemaker” (Gebru, 2019). Just

like human experts, these cases show that CNNs make judgments on the

basis of their initial training experiences. Therefore, biases in the training

set will be reflected in biases in the output recognition with limited

transfer within the category domain to another (Tanaka et al., 2005).

Diagnostic Features. In the expertise research, much attention has been

devoted to identifying the diagnostic object properties that facilitate sub-

ordinate level recognition, such as an object’s parts (Johnson & Mervis,

1997; Tanaka & Taylor, 1991), its color (Devillez et al., 2019; Hagen

et al., 2014; Jones et al., 2018), and SF information (Hagen et al., 2016;

Harel & Bentin, 2009; Jones et al., 2018). While many CNNs excel at

recognition, they are “black boxes” where the basis for their decisions is

not accessible. For example, though we know that the CNN accurately

identifies a cat in a picture, we can’t understand the exact mechanism or

chain of reasoning by which it generates this result. A picture of a cat

showing its incisors might require less convolutions to identify than

a picture of a cat with a party hat on its head. Interestingly, though the

semantic label “cat” could be outputted for ten pictures of cats, the exact

reasoning process of the CNNs could be theoretically unique for each.

Though we know an algorithm employs some process of reasoning, the

nature of its logic, or even whether its logic is consistent across calcula-

tions, cannot be secured through an analysis of its finished product alone.

Explainable AI (XAI) methods are being actively developed to provide

justifications for results in order to prevent unwarranted causal explan-

ations and to secure human trust in AI outputs (Rieger et al., 2020). The

machine learning community is also starting to explore new architectures

that rival or exceed CNNs, such as the Visual Transformer, but they need

to be trained with larger data sets to reveal these benefits (Dosovitskiy

et al., 2020). It is an open question whether these approaches will better

model human visual perception compared to the conventional CNN

architecture.

In this section, we discussed CNNs as the new perceptual expert whose

recognition performance rivals and even exceeds the performance of

seasoned human experts. However, the route to expert recognition for
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CNNs seems to be different than the strategies employed by human

perceptual experts. Unlike human experts, CNNs do not seem to abstract

representation of parts but recognize objects based on their distinctive

image patches (Geirhos et al., 2019). Although the patch approach serves

CNNs well in specialized domains, such as melanoma diagnosis (Esteva

et al., 2017) and retinopathy (Gulshan et al., 2016), this approach can lead

to unpredictable errors in everyday object recognition (Waldrop, 2019).

Despite their shortcomings, CNNs hold promise for elucidating the com-

putational principles of perceptual expertise involved in subordinate level

recognition, the role of learning experience, and identification of diagnos-

tic recognition cues.

12 Wrapping Up and Concluding Thoughts

This Element asked how experience changes the way we see the world. To

answer, we presented the effects of extensive domain-specific experience on

object recognition in perceptual experts like birdwatchers, dog judges, and

car aficionados. We proposed the downward shift hypothesis as a means of

predicting how experts differ from novices; whereas novices first recognize

and identify objects at the basic level of categorization, we hypothesized

that experts recognize the same object at the subordinate level (Rosch et al.,

1976). Confirmation of the downward shift hypothesis was exhibited in

studies of real-world experts (Johnson & Mervis, 1997; Tanaka & Taylor,

1991) and laboratory-trained participants (Gauthier & Tarr 1997; Jones

et al., 2018; Scott et al., 2006, 2008). By recognizing objects in their domain

of expertise at a lower level of the conceptual hierarchy, experts truly see the

world from a different perspective than novices.

Perceptual expertise varies. In its most narrow form, people can demon-

strate perceptual expertise for a single object of personal ownership such as

an item of clothing (Miyakoshi et al., 2007) or for a familiar landmark (Anaki

& Bentin, 2009). In contrast, societal groups of many members can display

a homogeneous downward shift in recognition for those objects that are

particularly meaningful and relevant in their everyday lives. For instance,

members of the Tzeltal culture in Mexico routinely identify plants by their

subordinate folk genera names (e.g., aspen, oak, redwood, and monkey tree)

rather than the basic level term “tree” preferred by people from industrial

societies. Perceptual experts can be found at all ages as exhibited by children

with EII and children on the autism spectrum whose obsessions with objects,

such as dinosaurs (Gobbo & Chi, 1986), shore birds (Johnson & Mervis,

1997), and Pokémon characters (Grelotti et al. 2005; Gomez et al. 2019),
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produce the same kind of downward shift in recognition observed in adult

experts.

At the perceptual level, experts are tuned to visual details such as the color

of objects in their domain of expertise (Devillez et al., 2019; Hagen et al.,

2014, 2016; Harel & Bentin, 2009). One compelling view to explain expert-

ise is the idea that experts form holistic representations of subordinate level

objects so that these objects shift from being perceived in terms of their parts

to being perceived as wholes. These template-like representations can be

disrupted by inversion (Campbell & Tanaka, 2018; Diamond & Carey,

1986). Expertise is manifested in the cognitive behaviors of the expert and

is exhibited by experts locating expert objects faster (Hershler & Hochstein,

2009; McGugin et al., 2011), encoding expert objects quicker (Curby &

Gauthier, 2009), and finding expert objects more memorable than nonexpert

objects (Curby et al., 2009; Curby & Gauthier, 2010).

The behavioral changes brought on by perceptual expertise are accom-

panied by changes in brain function. Neuroimaging findings show that real-

world experts (Gauthier et al., 2000), laboratory-trained experts (Gauthier

et al., 1999), and young children with special interests (Grelotti et al., 2005;

Gomez et al., 2019; James & James, 2013) show enhanced activation of the

FFAwhen viewing objects of expertise (Kanwisher et al., 1997; Kanwisher

& Yovel, 2006). Studies employing electrophysiological methods have

shown that the N170 and N250 brain components that are commonly associ-

ated with face processing are activated during expert recognition. Thus, the

brain structures and neural dynamics that are associated with face expertise

are engaged when perceptual experts see other types of objects in their

domain of expertise.

In recent years, CNNs have emerged as a new kind of perceptual expert.

When matched against human experts, CNNs do as well or even surpass the

judgments of experienced professionals (Esteva et al., 2017; Gulshan et al.,

2016). However, the paths to recognition for CNNs seem different than the

routes taken by humans. CNN classifications analyze small image patches of the

image in contrast to the part structure and global information used by the human

expert (Geirhos et al., 2019). Occasionally, images containing minute pixel

changes (i.e., adversarial images) that are imperceptible to the human eye can

produce unpredictable errors and bizarre misrecognitions in CNNs (Szegedy

et al., 2014). Despite these human and machine differences, CNNs are promis-

ing tools for probing computational aspects of perceptual expertise involving

subordinate level recognition (Fu et al., 2017; Ullman et al., 2016; Deng et al.,

2013), training biases (Buolamwini & Gebru, 2018), and identifying the diag-

nostic cues of expertise (Rieger et al., 2020).
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In conclusion, the collective evidence on perceptual expertise demonstrates

that experience shapes how we recognize objects in the world. Based on

extensive experience and training, experts recognize objects from their

domain of expertise at a more specific, subordinate level than novices.

Hence, contrary to Eleanor Rosch’s “structure in the world” view, there is

no universal, basic level of object recognition. Instead, what determines the

level at which we first recognize an object is in the eye, mind, and experience

of the beholder.
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