INTRODUCTION
- The current study explores the correlation of individual performances between a lexical decision task (LDT) and the North American Adult Reading Test (NAART) administered using personal laptops.

Part One: LDT
- Participants made word-nonword keyboard responses to various stimuli.
 - Distractor types: Pseudoword (pronounceable nonword, FOETH) or Nonword (non-pronounceable nonword, AFRPN).

Part Two: NAART
- Participants made verbal pronunciations to irregular single-word stimuli using an online audio-recording tool.

METHOD
Part One: LDT
- Participants (N=48) completed 10 blocks of 15 trials.
 - The task was to make word-nonword responses using the keys [H] and [K] to 4-5 letter, single word stimuli using their dominant index finger.
 - Real words varied between high frequency (50-1000) and low frequency (1-5).

Part Two: NAART
- Participants made audio recordings pronouncing 61 irregular, single word stimuli.
 - Recordings began when the stimuli was presented on the screen and ended when the participant pressed [ENTER].

RESULTS & DISCUSSION
- There was no significant correlation between reaction time on the LDT task with a participant’s accuracy on NAART.
 - There was no significant correlation between reaction time on the LDT task with a participant’s average speech-onset on NAART.
 - Participants had significantly faster reaction times for high frequency real word stimuli compared to low frequency real word stimuli.
 - Participants who had a slower speech-onset time had significantly higher accuracy on NAART.
 - Alone, each the LDT and NAART prove as accurate predictors of visual and verbal reading ability, respectively.
 - NAART online should be explored further as a useful tool for more accessible testing by clinical psychologists and other professionals.

ACKNOWLEDGEMENTS
We would like to thank the Different Minds Lab for their guidance and support in helping us navigate this experiment.

REFERENCES
Investigating Individual Differences in Visual Word Recognition Using a Lexical Decision Task and the North American Adult Reading Test

Olivia Longpre, Ipek Cukurova, Amy vanWell, Jessica Silverman & Dr. James Tanaka
University of Victoria, Canada

INTRODUCTION
- The current study explores the correlation of individual performances between a lexical decision task (LDT) and the North American Adult Reading Test (NAART) administered using personal laptops.

Part One: LDT
- Participants made word-nonword keyboard responses to various stimuli.
 - Distractor types: Pseudoword (pronounceable-nonword, CHUIR) or Nonword (non-pronounceable-nonword, GHXBF).

Part Two: NAART
- Participants made verbal pronunciations to irregular single-word stimuli using an online audio-recording tool.

METHOD

Part One (LDT):
- Participants (N=48) completed 10 blocks of 15 trials.
- The task was to make word-nonword responses using the keys [H] and [K] to 4-5 letter, single word stimuli using their dominant index finger.
- Real word varied between high frequency (50-1000) and low frequency (1-5).

Part Two (NAART):
- Participants made audio recordings pronouncing 61 irregular, single word stimuli.
 - Recordings began when the stimuli was presented on the screen and ended when the participant pressed [ENTER].

REFERENCES

DISCUSSION
- There was no significant correlation between reaction time on the LDT task with a participant’s accuracy on NAART.
- There was no significant correlation between reaction time on the LDT task with a participant’s average speech-onset on NAART.
- Participants had significantly faster reaction times for high frequency real word stimuli compared to low frequency real word stimuli.
- Participants who had a slower speech-onset time had significantly higher accuracy on NAART.
- Alone, each the LDT and NAART prove as accurate predictors of visual and verbal reading ability, respectively.
- NAART online should be explored further as a useful tool for more accessible testing by clinical psychologists and other professionals.

ACKNOWLEDGEMENTS
We would like to thank James Tanaka, Alison Campbell, Amy vanWell and the Different Minds Lab for their guidance and support in helping us navigate this experiment.

REFERENCES