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Abstract

We study the proximal and Frechet subdi�erentials of the marginal function derived

from a particular class of parameterized nonlinear programming problems. Under an

assumption known as inf-compactness, an equivalence between the augmentable La-

grange multipliers of such a problem and the proximal subgradients of the associated

marginal function can be shown. For the Frechet subdi�erential, we give an upper

estiamte in terms of �rst and second-order Lagrange multipliers.

1 Introduction

For i ∈ {0, 1 . . . , s− 1, s, s+ 1, . . . ,m} let fi : Rn → R and for u = (u1, u2, . . . , um) consider
the parameterized nonlinear programming problem, P (u), given by

(P (u)) min
x∈Rn

f0(x)

s.t. fi(x) + ui

{
≤ 0, i ∈ {1, . . . , s}
= 0, i ∈ {s+ 1, . . . ,m}.

We de�ne

F(u) =

{
x ∈ Rn

∣∣∣∣∣fi(x) + ui ≤ 0, i ∈ {1, . . . , s}
fi(x) + ui = 0, i ∈ {s+ 1, . . . ,m}

}
(Feasible region)

p(u) = inf{f0(x) : x ∈ F(u)} (Marginal function)

S(u) = {x ∈ F(u) : f0(x) = p(u)} (Solution set)

under the convention p(u) =∞ when F(u) = ∅.
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Originally problem P (u) was posited in an economic framework, the parametric depen-
dece of the problem viewed as a resource to be perturbed about some initial u ∈ Rm.
However, today, problem P (u) and its marginal function see applications in machine learn-
ing, speci�cally through hyper-parameter selection and bilevel optimization [7].

Denote the �rst-order Lagrange multipliers for problem P (u) at x ∈ F(u) by

K1(u, x) :=

y ∈ Rm

∣∣∣∣∣∣∣∣∣∣
0 = ∇f0(x) +

m∑
i=1

yi∇fi(x)

0 = yi(fi(x) + ui), i ∈ {1, . . . , s}
0 ≤ yi, i ∈ {1, . . . , s}

 .

Other than the convex programming case, and some instances in nonconvex programming
wherein p happened to be C2, the �rst strong results relating the subdi�erential theory of p
to Lagrange multipliers for solutions to problem P (u) were by Gauvin [5]. Gauvin's analysis
was through the somewhat recently de�ned Clarke subdi�erential [6] which, in the case of
a function f on Rm which is Lipschitz continuous near u ∈ Rm, is the collection ∂Cf(u)
de�ned by

∂Cf(u) := {y ∈ Rm : ∃un → u s.t. ∇f(un)→ y} .

Theorem 1.1 ([5]). Assume p is Lipschitz continuous near u ∈ Rm. Then

∂Cp(u) ⊆ co

 ⋃
x∈S(u)

K1(u, x)

 .
In order to ensure Lipschitz continuity of the marginal function p at some u ∈ Rm,

Gauvin assumed that the classical Mangasarian-Fromovitz constraint quali�cation held at
all solution x ∈ S(u), as well as assuming a condition with a similar purpose that that of
inf-compactness (De�nition 2.3).

Years later, Rockafellar obtained the same estimate regarding the Clarke subdi�erential
of p, but without the assumption of MFCQ on problem P (u) [2]. Instead, Rockafellar used
a condition analagous to inf-compactness known as inf-boundedness [3, Condition (1.1)], to-
gether with a growth condition on P (u) (De�nition 3.3). However, under his assumptions
p was no longer Lipschitz continuous. As such, his estimates are in terms of the full Clarke
subdi�erential. Eventually, Rockafellar would do away with the growth condition while still
maintaining his inf-boundedness assumption [3].

In this paper, we wish to provide estimates for the proximal and Frechet subdi�erentials
of p in terms of �rst and second-order Lagrange multipliers for P (u). Section 2 goes over
speci�c notation used in this paper. We also use this section to de�ne the subdi�erentials of
our analysis, as well as the inf-compactness condition assumed in nearly all results to follow.

The majority of Section 3 is spent proving Theorem 3.1, which is a result of Rockafellar's
whose proof spans [1], [2], [3]. Existing estimates for the augmentable Lagrange multipliers
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(Proposition 3.2) then yield our desired estimates for the proximal subdi�erential in terms
of �rst and second-order Lagrange multipliers.

Section 4 has two results which have not been explicitly seen by the author in the liter-
ature. Similar to those given for the proximal subdi�erential in Section 3, Lemma 4.1 gives
an upper bound for the Frechet subdi�erential in terms of �rst-order Lagrange multipliers
while Theorem 4.1 is a bound in terms of the second-order multipliers.

Finally, we use Section 5 to discuss possible weakenings of all results using restricted inf-
compactness (see De�nition 5.1) as opposed to the stronger inf-compactness (see De�nition
2.3).

2 Notation and Preliminaries

For k, q ∈ N, we denote the k-norm of x = (x1, x2, . . . , xq) ∈ Rq by

‖x‖k = k

√√√√ q∑
i=1

|xq|k.

The k-norm δ-ball centered at x ∈ Rq will be denoted Bk
δ (x) := {x′ ∈ Rq : ‖x′ − x‖k < δ}.

For an operator A : X → Y where X and Y are Banach spaces, we dentote the operator
norm of A as

‖A‖op = sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1}

We will let Ck (Rn) denote the collection of real-valued functions on Rn whose k-th par-
tial derivatives all exist and are continuous.

The �rst subdi�erential of importance to this paper is the proximal subdi�erential and
is de�ned as follows:

De�nition 2.1 (Proximal Subdi�erential [4]). For f : Rn → [−∞,∞] a lower-semicontinuous
function, the proximal subdi�erential of f at the point x ∈ Rn with f(x) < ∞, denoted
∂πf(x), is the collection of vectors ξ ∈ Rn such that there exists σ > 0 and δ > 0 for which

f(x′) ≥ f(x) + 〈ξ, x′ − x〉 − σ‖x′ − x‖22, ∀x′ ∈ B2
δ (x)

Observe for f : Rn → R lower-semicontinuous that ξ ∈ ∂πf(x) is equivalent to the
existence of g ∈ C2(Rn) and δ > 0 satisfying g(x) ≤ f(x) for all x ∈ B2

δ (x), g(x) = f(x),
and ξ = ∇xg(x) (See [1]).

One may deduce from the above characterization via C2 functions that if f : Rn → R
is twice continuously di�erentiable at x, then the proximal subdi�erential contains only the
usual gradient of f at x. That is, ∂pf(x) = {∇f(x)}. This is not the case when f is C1 near
x ∈ Rn (see [4]).
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De�nition 2.2 (Frechet subdi�erental [4]). For f : Rn → [−∞,∞] lower semicontinuous
the Frechet subdi�erential of f at x ∈ Rn with f(x) <∞ is the collection

∂Ff(x) :=

{
ξ ∈ Rn : lim inf

x′→x

f(x′)− f(x)− 〈ξ, x′ − x〉
‖x′ − x‖2

≥ 0

}
.

We say ξ ∈ ∂Ff(x) is a Frechet subgradient.

By de�nition, ξ ∈ Rn is a Frechet subgradient of a lower semicontinuous f : Rn →
[−∞,∞] if and only if for any σ > 0 there exists a δ > 0 such that

f(x′) ≥ f(x) + 〈ξ, x′ − x〉+ σ‖u− u‖2, ∀x′ ∈ B2
δ (x).

This characterization of the Frechet subgradients will be used extensively to prove our esti-
mate for the Frechet subdi�erential in Section 4.

In the context of problem P (u), one has no gaurantee that the marginal function p :
Rm → [−∞,∞] is lower semicontinuous, and hence no gaurentee that there exists well-
de�ned nonempty subdi�erential. As such, we employ a condition known as inf-compactness
to ensure lower semicontinuity of p at particular points of interest.

De�nition 2.3 (Inf-compactness [4]). We say that inf-compactness holds for problem P (u)
at u ∈ Rm if there exists α > 0, δ > 0 and a bounded set C ⊆ Rn such that α > p(u) and{

x ∈ F(u) : f0(x) ≤ α, u ∈ B2
δ (u)

}
⊆ C.

Inf-compactness around some u ∈ Rm also ensures the existence of a solution to P (u).
As stated in the introduction, inf-compactness will be a recurring assumption throughout
this paper.

3 Proximal Subdi�erential and Augmentable Lagrange

Multipliers

We begin this section by de�ning the (quadratic) augmented Lagrangian for problem P (u).

De�nition 3.1 (Augmented Lagrangian). The (quadratic) augmented Lagrangian asso-
caited to problem P (u) is the function Lu : Rn × Rm × R→ R de�ned by

(1) L(x, y, r) = f0(x) +
s∑
i=1

ϕ (fi(x) + ui, yi, r) +
m∑

i=s+1

ψ (fi(x) + ui, yi, r)

where

(2) ψ (fi(x) + ui, yi, r) = yi[fi(x) + ui] +
1

2
r[fi(x) + ui]

2,

(3) ϕ (fi(x) + ui, yi, r) =

{
ψ(fi(x) + ui, yi, r), if yi + r[fi(x) + ui] ≥ 0

− 1
2r
y2i , if yi + r[fi(x) + ui] ≤ 0
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Note that for any y ∈ Rm and r > 0, one has [3]

(4) Lu(x, y, r) ≤ f0(x) for all x ∈ F(u)

and consequently

(5) inf
x∈C

Lu(x, y, r) ≤ p(u) whenever C ⊇ F(u) [3].

The associated augmented (or augmentable) Lagrange multipliers can be de�ned either lo-
cally or globally in the following sense.

De�nition 3.2. The globally augmentable Lagrange multipliers for problem P (u) are given
by the collection

(6) AG(u) :=

{
y ∈ Rm : ∃r > 0 such that inf

x∈Rn
Lu(x, y, r) = p(u) <∞

}
.

The collection of (general) augmentable Lagrange multipliers for problem P (u) is given by

(7) A(u) :=

{
y ∈ Rm :

∃r > 0 and a neighborhood U of u

inf
x∈F (U)

Lu(x, y, r) = p(u) <∞

}
.

Observe that, as Rm is open, we have the containment

(8) AG(u) ⊆ A(u)

following by de�nition of a general augmentable Lagrange multiplier.

The main result of this section, whose proof we postpone for the time being, is the
following:

Theorem 3.1 ([3]). Assume inf-compactness holds at u ∈ Rm and that fi ∈ C0(Rn) for
i ∈ {0, 1 . . . ,m}. Then

∂πp(u) = A(u).

First appearing in [2], Theorem 3.1 is a generalization of [1, Theorem 5] wherein A(u)
is replaced by AG(u), and under the assumption of a certain quadratic growth condition
for P (u) (De�nition 3.3). Note that Theorem 3.1 as stated above is implicitly proven in [3]
using results from [1], [2] and [3]. Our goal is to o�er a complete proof similar to that which
Rockafellar had in mind, but in one location and assuming inf-compactness, as opposed to
inf-boundedness.

For the time being, we will require the growth condition used by Rockafellar:

De�nition 3.3 (Quadratic Growth Condition [1]). The quadratic growth condition holds in
the context of problem P (u) if

lim inf
‖u‖2→∞

p(u)

‖u‖22
> −∞.
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A particular case of the quadratic growth condition is when the marginal function p is
bounded below over all of Rm. We will see shortly that the quadratic growth condition
may be done away with using inf-compactness and considering a slightly modi�ed problem
P (u) whose marginal function and augmentable Lagrange multipliers agree with those of the
original problem.

Adapted from [1, Theorem 5] is the following lemma, which is the �rst relation between
proximal subgradients and augmented Lagrange multiplier theory for problem P (u) under
the quadratic growth condition.

Lemma 3.1. Assume for i = 0, 1, . . . ,m that fi ∈ C0(Rn) (i.e. each fi is continuous). Also
assume inf-compactness around u and the quadratic growth condition hold for P (u). Then

∂πp(u) = AG(u).

Proof. Let y ∈ AG(u). Then for some r > 0,

(9) p(u) ≤ inf
x∈Rn

Lu(x, y, r).

However, by noting [3, Equations (2.8− 2.9)]

Lu(x, y, r) = min
u:x∈F(u)

{
f0(x)− 〈y, u− u〉+

1

2
r‖u− u‖22

}
we have

(10) inf
x∈Rn

Lu(x, y, r) = inf
u∈Rm

{
p(u)− 〈y, u− u〉+

r

2
‖u− u‖22

}
.

Hence for all u ∈ Rm,

p(u) ≥ p(u) + 〈y, u− u〉 − r

2
‖u− u‖22

so that y ∈ ∂πp(u).

Now assume y ∈ ∂πp(u). Then there exists r1 > 0, δ > 0 such that for u ∈ B2
δ (u),

(11) p(u) ≥ p(u) + 〈y, u− u〉 − r1‖u− u‖22.

By de�nition of the quadratic growth condition, we may �nd real numbers r > 0, and q such
that for all u ∈ Rm

(12) p(u) ≥ q − r‖u‖22.

Choose r2 > 0 so that for all u with ‖u− u‖ ≥ δ

(13) q − r‖u‖22 ≥ p(u) + 〈y, u− u〉 − r2‖u− u‖22.
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Taking r := 2 max{r1, r2} we have from (12) and (13) that for all u ∈ Rm with ‖u− u‖ ≥ δ

(14) p(u) ≥ p(u) + 〈y, u− u〉 − r

2
‖u− u‖22.

From (11), we have that for all u ∈ Rm with ‖u− u‖ < δ

(15) p(u) ≥ p(u) + 〈y, u− u〉 − r

2
‖u− u‖22.

Combining (14) and (15), we see

p(u)− 〈y, u− u〉+
r

2
‖u− u‖22 ≥ p(u), ∀u ∈ Rm

Taking in�mums in x, we have from (10) that

inf
x∈Rn

Lu(x, y, r) = inf
u∈Rm

{
p(u)− 〈y, u− u〉+

r

2
‖u− u‖22

}
≥ p(u).

Since infx∈Rn Lu(x, y, r) ≤ p(u) holds in general, we conclude y ∈ AG(u).

The next proposition is analagous to [3, Proposition 1]. It full�lls a similar role in the
proof of Theorem 3.1 to that of the original statement from Rockafellar. In particular, it
will serve to gaurentee that when the marginal function p is bounded below globally, then
local and global augmentable Lagrange multipliers must agree.

Proposition 3.1. Assume inf-compactness holds at u ∈ Rm. Let y ∈ A(u) and let B ⊆ Rm

be any set such that u ∈ int(B) and p is bounded below on B. Then yi ≥ 0 for i = 1, . . . , s
and for all r > 0 su�ciently large one has

(16) S(u) = argmin
x∈F(B)

Lu(x, y, r) ⊆ int(B).

Proof. Recall [3, Equations (2.8− 2.9)]

(17) Lu(x, y, r) = min
u:x∈F(u)

{
f0(x)− 〈y, u− u〉+

r

2
‖u− u‖22

}
.

Hence, for arbitrary U ⊆ Rm,

(18) inf
x∈F(U)

Lu(x, y, r) = inf
u∈U

{
p(u)− 〈y, u− u〉+

r

2
‖u− u‖22

}
with x yielding a minimum on the left if and only if x ∈ S(u) for some u yielding the
minimum on the right (recall that S(u) 6= ∅ by inf-compactness). Taking U = B, we see the
relation (16) is equivalent to

(19) {u} = argmin
u∈B

{
p(u)− 〈y, u− u〉+

r

2
‖u− u‖22

}
7



since the continuity of the functions fi, i ∈ {0, 1, . . . ,m} ensures

intF(B) ⊇ F(u) ⊇ Su when u ∈ int(B).

On the other hand, the condition y ∈ A(u) translates by (18) into the existence of some
r > 0 and a neighborhood U of u such that

(20) u ∈ argmin
u∈U

{
p(u)− 〈y, u− u〉+

r

2
‖u− u‖22

}
, p(u) <∞.

(Note that this implies yi ≥ 0 for i = 1, . . . , s since p(u) is nondecreasing with respect to ui,
i = 1, . . . , s.)

The question therefore boils down to whether (20) holds for some r > 0 and neighborhood
U ensures that (19) holds for r su�ciently large. Choose ε > 0 such that ‖u−u‖2 ≤ ε implies
u ∈ U . It su�ces to show that if p(u) is �nite and r0 > 0 is such that

(21) p(u) ≥ p(u) + 〈y, u− u〉 − r0
2
‖u− u‖22 when ‖u− u‖2 ≤ ε,

then for all r > 0 su�ciently large, one will have

(22) p(u) > p(u) + 〈y, u− u〉 − r

2
‖u− u‖22 when u ∈ B, u 6= u.

As p is bounded below over B, there is α ∈ R such that p(u) ≥ α for all u ∈ B. We may
also take β ∈ R such that

〈y, u− u〉 − r0
2
‖u− u‖22 ≤ β for all u ∈ Rm.

If r > r0 but (22) is violated, we would have ‖u− u‖2 > ε but

α ≤ p(u) + 〈y, u− u〉 − r

2
‖u− u‖22

≤ p(u) + 〈y, u− u〉 − r0
2
‖u− u‖22 −

1

2
(r − r0)‖u− u‖22

< p(u) + β − ε

2
(r − r0),

so that r < r0+ 2
ε
[p(u)−α+β]. This shows that (22) cannot be violated when r is su�ciently

large.

With Proposition 3.1 in hand, we apply it to discern the when the marginal function is
bounded below globally, then local and global augmentable Lagrange multipliers agree.

Lemma 3.2. If p is bounded below on Rm and inf-compactness holds at p(u) then

A(u) = AG(u).
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Proof. Proposition 3.1 assures us that when y ∈ A(u), we have for arbitrary B ⊆ Rm such
that p is bounded below on B and u ∈ int(B):

(23) inf
x∈F(B)

Lu(x, y, r) = p(u) <∞ for r su�ciently large.

To see this, recall that

S(u) = argmin
x∈F(B)

Lu(x, y, r) ⊆ int F(B)

if and only if

argmin
u∈B

{
p(u)− 〈y, u− u〉+

r

2
‖u− u‖22

}
= {u}.

Then applying equation (18) allows us tot see

inf
x∈F(B)

Lu(x, y, r) = inf
u∈B

{
p(u)− 〈y, u− u〉+

r

2
‖u− u‖22

}
= p(u).

Now, since p is bounded below on Rm and F(Rm) = Rn, we have that in this particular case
that Proposition 3.1 implies any y ∈ A(u) satis�es

inf
x∈Rn

Lu(x, y, r) = p(u) <∞ for r su�ciently large.

Hence,
A(u) ⊆ AG(u).

Recalling that AG(u) ⊆ A(u) in general to conclude

A(u) = AG(u).

when p is bounded below on Rm.

Finally, we prove Theorem 3.1. To do so, we construct a modi�ed problem P (u) with the
same constraints, but an objective function which is bounded below on Rm, but locally agrees
with the objective function of problem P (u) (as a consequence of lower semicontinuity).
This local agreement ensures the two problems share the same locally augmentable Lagrange
multipliers at u. Moreover, it also gaurentees that the marginal function of problem P (u) and
the marginal function of the modi�ed problem must have the same proximal subdi�erential
at u. The theorem then follows by applying the results above to the modi�ed problem.

Theorem 3.2 (Theorem 3.1 Restated). Assume inf-compactness holds around u ∈ Rm and
that fi ∈ C0(Rn) for i ∈ {0, 1, . . . ,m}. Then

∂πp(u) = A(u).

Proof. Assume inf-compactness holds around u and that fi ∈ C0(Rn) for i ∈ {0, 1, . . . ,m}.
Then

∂πp(u) = A(u).
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Proof. Set α = p(u)− 1 and consider problem P̃ (u) de�ned by(
P̃ (u)

)
min
x∈Rn

f̃0(x) := max{f0(x), α}

s.t. fi(x) + ui

{
≤ 0, i ∈ {1, . . . , s}
= 0, i ∈ {s+ 1, . . . ,m}.

as well as the assosciated marignal function p̃ ≥ α and augmmented Lagrange multipliers
Ã(u) and ÃG(u) (de�ned analagously to p and A(u), AG(u)).

Since p̃(u) ≥ α for all u ∈ Rm, we have that the quadratic growth condition is satis�ed
for problem P̃ (u).

Since P̃ also satis�es inf-compactness around u and each fi ∈ C0(Rn), we then have that
the functions de�ning P̃ (u), namely f̃0 and fi, i = 1, . . . ,m, are all continuous. Applying
Lemma 3.1 to problem P̃ (u) we see

(24) ∂πp̃(u) = ÃG(u).

As inf-compactness holds around u for P (u), the marginal function p is lower semicontinuous
at u. Hence, as p(u) > α, we have p(u) > α for all u in some neighborhood U0 of u. Then
for all x ∈ F(U0) we have f0(x) > α and so f̃0(x) = f0(x). Hence, for u ∈ U0, we have both

p̃(u) = p(u) and Ã(u) = A(u).

Thus, by (24)
∂πp(u) = ∂πp̃(u) = ÃG(u) = Ã(u) = A(u).

Estimates for the proximal subdi�erential in terms of more common multipliers for prob-
lem P (u) follows by the work of Rockafellar in [3]. It should be noted that there are a
plethora of such estimates following from Theorem 3.1, but we give here estimate in terms of
the usual �rst-order multipliers for P (u) and another estimate in terms of somewhat unusual
second-order multipliers for problem P (u).

De�nition 3.4. Rockafellars second-order Lagrange multipliers for P (u) at x ∈ F(u) are
given by

K2(u, x) :=

y ∈ K1(u, x)

∣∣∣∣∣∣∣
w

(
∇2
xxf0(x) +

m∑
i=1

yi∇2
xxfi(x)

)
w ≥ 0

∀w ∈ W (u, x)


where ∇2

xxfi(x) is the Hessian of fi at x, and

W (u, x) :=

w ∈ Rn

∣∣∣∣∣∣∣
〈∇fi(x), w〉 ≤ 0, for i ∈ {1, . . . , s} with fi(x) + ui = 0

〈∇fi(x), w〉 = 0 for i ∈ {s+ 1, . . . ,m}
∇f0(x) ≤ 0
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Proposition 3.2 ([3], Proposition 4).

� Let fi ∈ C1(Rn) for i ∈ {0, 1 . . . ,m} and inf-comapctness hold around u. Then for any
x ∈ S(u),

∂πp(u) = A(u) ⊆ K1(x, u).

� Let fi ∈ C2(Rn) for i ∈ {0, 1 . . . ,m} and inf-compactness hold around u. Then for any
x ∈ S(u),

∂πp(u) = A(u) ⊆ K2(x, u).

4 Frechet Subdi�erential and Lagrange Multipliers

The section discusses estimates for the Frechet subdi�erential of the marginal function p :
Rm → R for P (u). Lemma 4.1 gives an estimate in terms of usual �rst-order Lagrange
multipliers, K1(u, x), analagous to the �rst-order estimate of Proposition 3.2.

Theorem 4.1, while similar to the second-order result of Proposition 3.2 for the proximal
subdi�erential, we de�ne our Lagrange multipliers in a slightly di�erent manner.

Lemma 4.1. Assume inf-compactness for problem P (u) holds around u ∈ Rm and fi ∈
C1(Rn) for i ∈ {0, 1, . . . ,m}. Then for each x ∈ S(u),

∂Fp(u) ⊆ K1(u, x)

Proof. Take x ∈ S(u) (which is nonempty by inf-compactness), ξ ∈ ∂Fp(u), and let ε > 0

be given. Then for σ = min
{
ε, ε

m sup{‖∇xfi(x)‖2:i∈{1,...,m}}

}
, we may �nd δ > 0 such that

(25) p(u) ≥ p(u) + 〈ξ, u− u〉 − σ‖u− u‖2, ∀u ∈ B2
δ (u)

Rearranging (25), we see

(26) p(u) ≤ p(u)− 〈ξ, u− u〉+ σ‖u− u‖2, ∀u ∈ B2
δ (u)

Note
p(u) ≤ f(x), ∀x ∈ F(u)

by de�nition of p(u). Then since p(u) = f(x) we have from (26) that

f(x) ≤ f(x)− 〈ξ, u− u〉+ σ‖u− u‖2, ∀u ∈ B2
δ (u), ∀x ∈ F(u).

The 2-norm on Rm is bounded above by the 1-norm so

‖u− u‖2 ≤ ‖u− u‖1 =
m∑
i=1

|ui − ui|.
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Moreover, by the equivalence of norms on �nite dimensional space there exists some δ′ > 0
such that B1

δ′(u) ⊆ B2
δ (u). Thus for all u ∈ B1

δ′(u) and x ∈ F(u) we have

f0(x) ≤ f0(x)− 〈ξ, u− u〉+ σ‖u− u‖1. = f0(x)−
m∑
i=1

ξi(ui − ui) + σ
m∑
i=1

|ui − ui|.

De�ne a new variable t = (t1, t2, . . . , tm) ∈ Rm and assume for each i ∈ {1, 2, . . . ,m}
that ti ≥ |ui − ui|. Then the condition

∑m
i=1 ti ≤ δ′ ensures u ∈ B1

δ′(u). Hence, for
(x, u, t) ∈ Rn × Rm × Rm with x = (x1, . . . , xm), u = (u1, . . . , um), t = (t1, . . . , tm) and such
that

δ′ ≥
m∑
i=1

ti(27)

ti ≥ |ui − ui|, ∀i ∈ {1, . . . ,m}(28)

x ∈ F(u)(29)

we must have

(30) f0(x) ≤ f0(x)−
m∑
i=1

ξi(ui − ui) + σ
m∑
i=1

ti.

Note that we may replace the m inequalities of (28) by the 2m inequalities

ti ≥ ui − ui, i ∈ {1, . . . ,m}(31)

ti ≥ −ui + ui, i ∈ {1, . . . ,m}(32)

Since inequality (30) holds as equality at the point (x, u, t) = (x, u, 0) (which satis�es condi-
tions (27), (29), and (31− 32)) we have that (x, u, 0) is a solution to the nonlinear program,
B(σ) given by

min
(x,u,t)

f0(x)−
m∑
i=1

ξi(ui − ui) + σ

m∑
i=1

ti

s.t. −δ′ +
m∑
i=1

ti ≤ 0(B(σ))

ui − ui − ti ≤ 0, ∀i ∈ {1, . . . ,m}
−ui + ui − ti ≤ 0, ∀i ∈ {1, . . . ,m}

fi(x) + ui ≤ 0, ∀i ∈ {1, . . . , s}
fi(x) + ui = 0, ∀i ∈ {s+ 1, . . . ,m}

The Lagrangian for such a problem is

L : Rn × Rm × Rm × R× Rm × Rm × Rs × Rm−s → R

12



for (x, u, t, α, β, χ, η, ν) ∈ Rn × Rm × Rm × R× Rm × Rm × Rs × Rm−s as

L(x, u, t, α, β, χ, η, ν) =f0(x)−
m∑
i=1

ξi(ui − ui) + σ
m∑
i=1

ti + α

(
−δ′ +

m∑
i=1

ti

)

+
m∑
i=1

βi(ui − ui − ti) +
m∑
i=1

χi(−ui + ui − ti)

+
s∑
i=1

ηi(fi(x) + ui) +
m−s∑
i=1

νi(fs+i(x) + us+i).

Let us denote

F1(x, u, t) := −δ′ +
m∑
i=1

ti ≤ 0

F(1)i(x, u, t) := ui − ui − ti ≤ 0, ∀i ∈ {1, . . . ,m}
F(2)i(x, u, t) := −ui + ui − ti ≤ 0, ∀i ∈ {1, . . . ,m}
F(3)i(x, u, t) := fi(x) + ui ≤ 0, ∀i ∈ {1, . . . , s}
F(4)i(x, u, t) := fi(x) + ui = 0, ∀i ∈ {s+ 1, . . . ,m}.

Under the assumption that fi is C1 for each i ∈ {0, 1, . . . ,m} we have that each of the above
functions on Rn × Rm × Rm are continuously di�erentiable.

We now show MFCQ holds for B(σ) at (x, u, 0). Note F1(x, u, 0) = −δ′ < 0 so F1(x, u, t)
is an inactive constraint at (x, u, 0). Letting ei denote the i-th basis vector for Rn+m+m, we
have

∇(x,u,t)F(1)i(x, u, 0) = en+i − en+m+i ∈ Rn+m+m i ∈ {1, . . . ,m}
∇(x,u,t)F(2)i(x, u, 0) = −en+i − en+m+i ∈ Rn+m+m i ∈ {1, . . . ,m}

∇(x,u,t)F(3)i(x, u, 0) =

∇xfi(x)
0Rm

0Rm

+ en+i ∈ Rn+m+m i ∈ {1, . . . , s}

∇(x,u,t)F(4)i(x, u, 0) =

∇xfi(x)
0Rm

0Rm

+ en+i ∈ Rn+m+m i ∈ {s+ 1, . . . ,m}.

Clearly then the collection{
∇(x,u,t)F(3)i(x, u, 0) : i ∈ {s+ 1, . . . ,m}

}
consisting of gradients (with respect to (x, u, t)) of the equality constraint functions of B(σ)
evaluated at (x, u, t) = (x, u, 0) form a linearly independent set of vectors. Moreover, for

d =
s∑

i=n+1

−ei +
n+m+m∑
i=n+m+1

2ei ∈ Rn+m+m

13



we have

(en+i − en+m+i)
Td < 0, i ∈ {1, . . . ,m}

(−en+i − en+m+i)
Td < 0, i ∈ {1, . . . ,m}∇xf(x)

0Rm

0Rm

+ en+i

T

d < 0, i ∈ {1, . . . , s}

∇xf(x)
0Rm

0Rm

+ en+i

T

d = 0, i ∈ {s+ 1, . . . ,m}.

Thus MFCQ is satis�ed at the solution (x, u, 0) to B(σ). From �rst order necessary optimal-
ity conditions there must exist a �rst-order Lagrange multiplier (α, β, χ, η, ν) ∈ R+ × Rm

+ ×
Rm

+ × Rs
+ × Rm−s satisfying

0 = ∇(x,u,t)L(x, u, 0, α, β, χ, η, ν)(33)

0 = αF1(x, u, 0) = −αδ′(34)

0 = ηiF(4)i(x, u, 0) = ηi (fs+i(x) + ui) , i ∈ {1, . . . ,m− s}(35)

From complementary-slackness, the multiplier corresponding to the constraint F1(x, u, 0) ≤
0, namely α ∈ R, is 0. From equation (33) we have

∇xL(x, u, 0, 0, β, χ, η, ν) = 0 = ∇xf0(x) +
s∑
i=1

ηi∇xfi(x) +
m−s∑
i=1

νi∇xfs+i(x).(36)

∇uL(x, u, 0, 0, β, χ, η, ν) = 0 = −ξ + β − χ+

(
η
ν

)
(37)

∇tL(x, u, 0, 0, β, χ, η, ν) = 0 = σ1Rm×1 − β − χ(38)

where 1Rm×1 =
∑m

i=1 ei ∈ Rm. In particular, ηi = ξi + χi − βi for i ∈ {1, . . . , s} and
νi−s = ξi + χi − βi for i ∈ {s+ 1, . . . ,m}. This combined with equation (36) shows

0 = ∇xf0(x) +
m∑
i=1

ξi∇xfi(x) +
m∑
i=1

(χi − βi)∇xfi(x).

However, since σ = βi + χi and βi, χi ≥ 0 for all i ∈ {1, . . . ,m} it holds then that

|βi − χi| ≤ |βi|+ |χi| = βi + χi = σ <
ε

m sup {‖∇xfi(x)‖2 : i ∈ {1, . . . ,m}}
.
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Hence, ∥∥∥∥∥∇xf0(x) +
m∑
i=1

ξi∇xfi(x)

∥∥∥∥∥
2

≤

∥∥∥∥∥
m∑
i=1

(χi − βi)∇xfi(x)

∥∥∥∥∥
2

≤
m∑
i=1

‖(χi − βi)∇xfi(x)‖2

≤ mσ sup {‖∇xfi(x)‖2 : i ∈ {1, . . . ,m}} < ε.

As this holds for every ε > 0, we conclude ∇xf0(x) +
∑m

i=1 ξi∇xf(x) = 0.

Also for every i ∈ {1, . . . , s} we have ηi ≥ 0 so from 0 ≤ χi, βi ≤ σ

ξi = ηi + βi − χi ≥ −σ > −ε.

Since this holds for every ε > 0 we conclude ξi ≥ 0 for all i ∈ {1, . . . , s}.

Finally, fi(x)+ui < 0 for some i ∈ {1, . . . , s} implies ηi = 0 by complementary slackness.
Therefore, in this case, we have another estimate,

|ξi| = |ξi − ηi| = |βi − χi| ≤ σ ≤ ε.

Again, as this holds for all ε > 0, we conclude ξi = 0 for all i ∈ {1, . . . , s} such that
fi(x) + ui < 0.

As

0 = ∇xf0(x) +
m∑
i=1

ξi∇xfi(x)

0 = ξi (fi(x) + ui) , i ∈ {1, . . . , s}
ξi ≥ 0, i ∈ {1, . . . , s}

we conclude ξ ∈ K1(u, x).

On the other hand, Theorem 4.1 gives an estimate for the Frechet subdi�erential in terms
of the usual second-order multipliers for problem P (u) given here:

De�nition 4.1. The usual second-order multipliers for P (u) at x ∈ F(u) are given by

M2(u, x) :=

y ∈ K1(u, x)

∣∣∣∣∣∣∣
dT

(
∇2
xxf0(x) +

m∑
i=1

yi∇2
xxfi(x)

)
d,

∀d ∈ Ω(u, x)

 ,

where

Ω(u, x) :=
{
d ∈ Rn

∣∣∇f(x)Td = 0,∀i ∈ {1, . . . ,m} with fi(x) + ui = 0
}
.
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Theorem 4.1. Assume inf-compactness for P (u) holds around u ∈ Rm, and assume fi ∈
C2(Rn) for i ∈ {0, 1, . . . ,m}. Then for every x ∈ S(u),

∂Fp(u) ⊆M2(u, x).

Proof. Let ξ ∈ ∂Fp(u). Take x ∈ S(u). Then as fi ∈ C2(Rn) ⊂ C1(Rn) we have ξ ∈ K1(u, x).

Assume to the contrary that there exists some d ∈ Ω(u, x) such that

dT

(
∇2
xxf0(x) +

m∑
i=1

ξi∇2
xxfi(x)

)
d = a < 0.

Then for σ ∈ R with

0 < σ <
−a

m · ‖d‖22 · supi∈{1,...,m} ‖∇2
xxf(x)‖op

we have by the reformulation in the proof of Lemma 4.1 that (x, u, 0) is a solution to B(σ) for
which MFCQ holds. By the second order necessary conditions, there exists a second-order
multiplier (of the usual kind),

(α, β, χ, η, ν) ∈ R× Rm × Rm × Rs × Rm−s

corresponding to the solution (x, u, 0) of B(σ). In particular, (α, β, χ, η, ν) is a �rst-order
Lagrange multiplier for the solution (x, u, 0) of B(σ) which also satis�es

vT∇2
(x,u,t)L0(x, u, 0, α, β, χ, η, ν)v ≥ 0

for all v ∈ Rn+m+m such that(
∇(x,u,t)F(j)i(x, u, 0)

)T
v = 0, j ∈ {1, 2}, i ∈ {1, . . . ,m}(39) (

∇(x,u,t)F(3)i(x, u, 0)
)T
v = 0, i ∈ {1, . . . , s} with F(3)i(x, u, 0) = 0(40) (

∇(x,u,t)F(4)i(x, u, 0)
)T
v = 0, i ∈ {s+ 1, . . . ,m},(41)

where ∇2
(x,u,t)L : Rn+m+m → Rn+m+m is the Hessian of the Lagrangian L of B(σ) with

respect to the �rst n+m+m coordinates corresponding to (x, u, t).
Notice

∇2
(x,u,t)L(x, u, 0, α, β, χ, η, ν)

=


∇2
xxf0(x) +

∑s
i=1 ηi∇2

xxfi(x) +
∑m−s

i=1 νi∇2
xxfs+i(x) | 0n×m | 0n×m

− − −
0m×n | 0m×m | 0m×m
− − −

0m×n | 0m×m | 0m×m
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and that for any d ∈ Ω(u, x) we have

v =

 d
0m×1
0m×1

 ∈ Rn+m+m

satis�es equations (39 − 41) simultaneously. As (α, β, χ, η, ν) is a second-order Lagrange
multiplier for the solution (x, u, 0) of B(σ), we then have d

0m×1
0m×1

T

∇xxL0(x, u, 0, α, β, χ, η, ν)

 d
0m×1
0m×1

(42)

= dT

(
∇2
xxf0(x) +

s∑
i=1

ηi∇2
xxfi(x) +

m−s∑
i=1

νi∇2
xxfs+i(x)

)
d ≥ 0

As (α, β, χ, η, ν) is a �rst-order Lagrange multiplier for the solution (x, u, 0) of B(σ), we have
α = 0 and that equations (36− 38) still hold. These equalities combined with equation (42)
allows us to see

0 ≤ dT

(
∇2
xxf0(x) +

m∑
i=1

ξi∇2
xxfi(x)

)
d+ dT

(
m∑
i=1

(χi − βi)∇2
xxfi(x)

)
d

= a+ dT

(
m∑
i=1

(χi − βi)∇2
xxfi(x)

)
d

≤ a+

∣∣∣∣∣dT
(

m∑
i=1

(χi − βi)∇2
xxfi(x)

)
d

∣∣∣∣∣
≤ a+

m∑
i=1

(χi − βi)
∥∥∇2

xxfi(x)
∥∥
op
· ‖d‖22

= a+ σ‖d‖22
m∑
i=1

∥∥∇2
xxfi(x)

∥∥
op

≤ a+ σ ·m · ‖d‖22 · sup
i∈{1,...,m}

∥∥∇2
xxfi(x)

∥∥
op

< 0

by our choice of σ > 0. Hence 0 < 0, a contradiction.
We conclude

dT

(
∇2
xxf0(x) +

m∑
i=1

ξi∇2
xxfi(x)

)
d ≥ 0

for all d ∈ Ω(u, x).
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5 Concluding Remarks

As mentioned in the introduction, a condition strictly weaker than inf-compactness, known
as restricted inf-compactness [8, De�nition 3.8] is de�ned by:

De�nition 5.1. We say that the restricted inf-compactness holds around u if p(u) is �nite
and there exists a compact set C and a positive number ε0 such that, for all u ∈ B2

ε0
(u) for

which p(u) < p(u) + ε, the problem P (u) has a solution in C.

The author is fairly convinced that all of the analysis above is valied assuming restircted
inf-compactness. The key reason being that inf-compactness is only applied to ensure lower
semicontinuity of the value function, as well as nonemptiness of the solution set. However, if
using the Frechet or proximal subdi�erentails to construct the limiting subdi�erential, there
is a chance that restricted inf-compactness becomes too weak and that even a weaker upper
bound of the form ∂Lp(u) ⊆

⋃
x∈S(u), where ∂

Lp(u) is the limiting subdi�erential of p at u.
The main concern of the author is that restricted inf-compactness at u does not imply the
nonemptiness of S(u) near u.

Another interesting consideration of the author would be the possibility of a proof for
the proximal subdi�erential estimates in terms of Lagrange multipliers which uses a method
analagous to the Frechet subdi�erential estimates proof of Lemma 4.1 and Theorem 4.1. By
introducing a new viarable, there is an opportunity to de�ne a smooth di�erentiable pro-
gramming problem using inequality from the proximal subgradient de�nition.

Finally, I would like to thank Dr. Ye and Dr. MacGillivray for their invaluable help in
writing this thesis.
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